Math, asked by piyush2806, 9 months ago

Average of 45 consecutive number is 398 and 45 consecutive odd number is 499 .what is square diff b/w largest even number and smallest odd number

Answers

Answered by sammane2514
3

Answers

square \:  of \:   difference \:  between  \: largest  \: even  \: number \:  and  \: smallest  \: odd  \: number \:  is \: 1225.

Mark brainliest if seems appropriate!

Step-by-step explanation:

Let  \: 45 \: consecutive  \: numbers \:  be \:  x, \: (x + 1), \: (x + 2), \: (x + 3), \: (x + 4)..............(x + 44). \\ Average  \: of  \: 45 \:  consecutive \:  number  \: is  \: 398  \\ </p><p>Therefore \\  \frac{x + (x + 1) + (x + 2) + (x + 3) + ......... + (x + 43) + (x + 44)}{45}  = 398 \\  \frac{45x + (1 + 2 + 3 + ...... + 44)}{45}  = 398 \\  \\ As \:  summation \:  of \:  n  \: consecutive  \: integers  \: is  \: given  \: as \\ S =  \frac{n(n + 1)}{2}  \\ Therefore \: summation \:  of \:  44  \: consecutive  \: integers  \: is \\ S =  \frac{44(44 + 1)}{45}  \\ (22)(45) \\ Therefore \\ \frac{45x + (1 + 2 + 3 + ...... + 44)}{45} =  \frac{45x + (22)(45)}{45}  = 398 \\   \frac{45(x + 22}{45}  = 398 \\ x + 22 = 398 \\ x = 376  \\ x + 44 = 376 + 44 \\ (x + 44) = 420 \\ Hence  \: largest  \: integer  \: of  \: 45 \:  consecutive  \: number \:  is \: (x + 44) = 420. \\  \\ Let  \: 45 \: consecutive  \: odd \: numbers \:  be \:  x, \: (x + 2), \: (x + 4), \: (x + 6), \: (x + 8)..............(x + 88). \\ Average  \: of  \: 45 \:  consecutive \: odd \:  number  \: is  \: 499 \\ Therefore \\  \frac{x + (x + 2) + (x + 4) + (x + 6) + ...... + (x + 88) }{45}  = 499 \\  \frac{45x + (2 + 4 + 6 + ........ + 88)}{45} = 499  \\ Now \: ( 2, \: 4, \: 6, \: 8,,,,,,,,,,,88) \: is \:  an \: AP \: (2 + 4 + 6 + ........ + 88)  \: with \:  a = 2 \: and \:  d = 2 </p><p>Therefore, \: (2 + 4 + 6 + ........ + 88) \: is \: summation \: of \: AP \: with \: a = 2 \: and \:  d = 2  \: and \: n = 44 \\ Therefore \: by  \: summation  \: formula  \: for \:  AP: Sn =  \frac{n}{2} ((2a) + (n - 1)d) \\ Hence \: S(44) =  \frac{44}{2} (2(2) + (44 - 1)(2)) \\ S(44) = (22)(4 + (43)(2)) \\ S(44) = (22)(90) \\ Hence \\ \frac{45x + (2 + 4 + 6 + ........ + 88)}{45} =  \frac{45x + (22)(90)}{45}  = 499 \\  \frac{45(x + (22)(2)}{45}  = 499 \\ (x + 44) = 499 \\ (x + 44)  -  44 = 499  -  44 \\ x = 455 \\  Now \: x \:  is \:  smallest  \: term \:  in \:  45 \:  consecutive  \: odd  \: numbers  \\ </p><p>Therefore  \: smallest \:  number \:  in \:  consecutive  \: odd  \: numbers  \: is \: 455. \\  \\   \\ Now \:  largest \:  even \:  number \:  is \: 420  \: and  \: smallest \:  odd  \: number \:  is \: 455 \\ </p><p>Therefore,  \: square \:  of \:   difference \:  between  \: largest  \: even  \: number \:  and  \: smallest  \: odd  \: number \:  is:  \\  {(455 - 420)}^{2}  =  {35}^{2}  = 1225. \\ Hence \: square \:  of \:   difference \:  between  \: largest  \: even  \: number \:  and  \: smallest  \: odd  \: number \:  is \: 1225.

Answered by viveksheel
1

Answer:

158

Step-by-step explanation:

Similar questions