Math, asked by saryka, 2 months ago

⇒ Avoid spamming
⇒ No useless answers​

Attachments:

Answers

Answered by mathdude500
115

\large\underline{\bold{Given \:Question - }}

 \sf \: Simplify :  \:  {\bigg(\dfrac{256}{625}  \bigg) }^{\dfrac{ - 3}{4} } \times {\bigg(\dfrac{81}{16}  \bigg) }^{\dfrac{ - 3}{2} } \div {\bigg(\dfrac{9}{2}  \bigg) }^{ - 3}

Answer

Basic Identities Used :-

 1. \:  \:  \:  \: \boxed{  \red{\bf \:  {a}^{ - n} = \dfrac{1}{ {a}^{n} }}}

 2. \:  \:  \:  \: \boxed{  \red{\bf \:  {\bigg( { {(a}^{n} )}^{m}\bigg) } = {a}^{mn} }}

 3. \:  \:  \:  \: \boxed{  \red{\bf \:{\bigg(\dfrac{x}{y}  \bigg) }^{m} = \dfrac{ {x}^{m} }{ {y}^{m} } }}

\large\underline{\sf{Solution-}}

 \rm :\longmapsto\:\sf \:\:  {\bigg(\dfrac{256}{625}  \bigg) }^{\dfrac{ - 3}{4} } \times {\bigg(\dfrac{81}{16}  \bigg) }^{\dfrac{ - 3}{2} } \div {\bigg(\dfrac{9}{2}  \bigg) }^{ - 3}

  \bigg \{\rm \: 256 = 4 \times 4 \times 4 \times 4 =  {4}^{4} \\  \rm \: 625 = 5 \times 5 \times 5 \times 5 =  {5}^{4}  \\ 81 = 3 \times 3 \times 3 \times 3 =  {3}^{4}  \\ 16 = 2 \times 2 \times 2 \times 2 =  {2}^{4} \bigg \}

\sf \: \:  =  \:  \:  {\bigg(\dfrac{ {4}^{4} }{ {5}^{4} }  \bigg) }^{\dfrac{ - 3}{4} } \times {\bigg(\dfrac{ {3}^{4} }{ {2}^{4} }  \bigg) }^{\dfrac{ - 3}{2} } \div {\bigg(\dfrac{2}{9}  \bigg) }^{3}

\sf \: \:  =  \:  \:  {\bigg(\dfrac{4}{5}  \bigg) }^{4 \times \dfrac{ - 3}{4} } \times {\bigg(\dfrac{3}{2}  \bigg) }^{4 \times \dfrac{ - 3}{2} } \div {\bigg(\dfrac{2}{9}  \bigg) }^{3}

\sf \: \:  =  \:  \:  {\bigg(\dfrac{4}{5}  \bigg) }^{ - 3} \times {\bigg(\dfrac{3}{2}  \bigg) }^{ - 6} \div {\bigg(\dfrac{2}{9}  \bigg) }^{3}

\sf \: \:  =  \:  \:  {\bigg(\dfrac{5}{4}  \bigg) }^{3} \times {\bigg(\dfrac{2}{3}  \bigg) }^{6} \times {\bigg(\dfrac{9}{2}  \bigg) }^{3}

\sf \: \:  =  \:  \:  {\bigg(\dfrac{5}{ {2}^{2} }  \bigg) }^{3} \times {\bigg(\dfrac{2}{3}  \bigg) }^{6} \times {\bigg(\dfrac{ {3}^{2} }{2}  \bigg) }^{3}

\sf \: \:  =  \:  \:  {\bigg(\dfrac{ {5}^{3} }{ {2}^{6} }  \bigg) } \times {\bigg(\dfrac{ {2}^{6} }{ {3}^{6} }  \bigg) } \times {\bigg(\dfrac{ {3}^{6} }{ {2}^{3} }  \bigg) }

\sf \: \:  =  \:  \:  {\bigg(\dfrac{ {5}^{3} }{  \cancel{{2}^{6}} }  \bigg) } \times {\bigg(\dfrac{ \cancel{ {2}^{6}} }{ \cancel{ {3}^{6}} }  \bigg) } \times {\bigg(\dfrac{  \cancel{{3}^{6}} }{ {2}^{3} }  \bigg) }

  \sf \:  \:  =  \:  \: \dfrac{ {5}^{3} }{ {2}^{3} }

 \sf \:  \:  =  \:  \: \dfrac{5 \times 5 \times 5}{2 \times 2 \times 2}

 \sf \:  \:  =  \:  \: \dfrac{125}{8}

Additional Information :-

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0} = 1}}}}} \\ \end{gathered}

Answered by PopularAnswerer01
96

\huge\underline{\underline {\sf{ Question }}} :

  • Simplify  {\bigg( \dfrac{256}{625}\bigg)}^{ \frac{ - 3}{ \:  \: 4 } }  \times {\bigg( \dfrac{81}{16}\bigg)}^{ \frac{ - 3}{ \:  \: 2} }   \div  {\bigg(\dfrac{9}{2}\bigg)}^{ - 3}

\huge\underline{\underline {\sf{ Solution }}} :

 \sf \dashrightarrow \  \frac{{ \bigg(\dfrac{ {4}^{4} }{ {5}^{4} } \bigg)}^{ \frac{ - 3}{ \: 4} }  \times  {\bigg( \dfrac{ {3}^{4} }{ {2}^{4} } \bigg)}^{ \frac{ - 3}{ \:  \: 2} } }{{ \bigg(\dfrac{2}{9}\bigg)}^{3}  }

\sf \dashrightarrow \   \frac{{ \bigg(\dfrac{ 4 }{ 5 } \bigg)}^{  - 3 }  \times  {\bigg( \dfrac{ 3 }{ 2 } \bigg)}^{ - 6 } }{{ \bigg(\dfrac{2}{9}\bigg)}^{3}  }

\sf \dashrightarrow \   \frac{{ \bigg(\dfrac{ 5 }{ 4 } \bigg)}^{   3 }  \times  {\bigg( \dfrac{ 2 }{ 3 } \bigg)}^{  6 } }{{ \bigg(\dfrac{2}{9}\bigg)}^{3}  }

 \sf \dashrightarrow \   \dfrac{  { \: 5 \: }^{3} }{ \cancel{ { 2 }^{6} } }  \times  \dfrac{ \cancel{ {2}^{6} } }{\cancel{  {3}^{6} } } \times \dfrac{ \cancel{{3}^{6}} }{ {2}^{3} }

 \sf \dashrightarrow \   \dfrac{  { \: 5 \: }^{3} }{  { 2 }^{3}  }

 \sf \dashrightarrow \   \dfrac{ 125 }{  8  }

Hence ,

  • The answer is  \sf  \   \dfrac{ 125 }{  8  }

\huge\underline{\underline {\sf{ Extra \: Information }}} :

 \large\dashrightarrow\boxed{\sf{  {a}^{m} \times  {a}^{n}  =  {a}^{m + n}  }}

 \large\dashrightarrow\boxed{\sf{   \frac{{a}^{m}}{{a}^{n}}  =  {a}^{m  -  n}  }}

 \large\dashrightarrow\boxed{\sf{  {a}^{0} = 1 }}

 \large\dashrightarrow\boxed{\sf{  { a }^{ -n } = \dfrac { 1 } { { a }^{ n } } }}

Similar questions