ax+a
2
+aby+by−(ax+by)
2
Answers
Answer:
x−1−(x−1)
x−1−(x−1) 2
x−1−(x−1) 2 +ax−a
x−1−(x−1) 2 +ax−a=(x−1)−(x−1)
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by)
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by)
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by)
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by) 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by) 2
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by) 2 =(ax+by)[1+a−(ax+by)]
x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by) 2 =(ax+by)[1+a−(ax+by)]=(ax+by)(1+a−ax−by)
Step-by-step explanation:
hope it helps you
Answer:
aby+by-(ax+by)×2
Step-by-step explanation:
2ax+by-aby+by