Math, asked by yofrakuhi, 18 days ago

ax+a
2
+aby+by−(ax+by)
2​

Answers

Answered by llAestheticKing379ll
1

Answer:

x−1−(x−1)

x−1−(x−1) 2

x−1−(x−1) 2 +ax−a

x−1−(x−1) 2 +ax−a=(x−1)−(x−1)

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by)

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by)

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by)

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by) 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by) 2

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by) 2 =(ax+by)[1+a−(ax+by)]

x−1−(x−1) 2 +ax−a=(x−1)−(x−1) 2 +a(x−1)=(x−1)[1−(x−1)+a ]=(x−1)(1−x+1+a)=(x−1)(2−x+a)(ii)ax+a 2 x+aby+by−(ax+by) 2 =(ax+by)+(a 2 x+aby)−(ax+by) 2 =(ax+by)+a(ax+by)−(ax+by) 2 =(ax+by)[1+a−(ax+by)]=(ax+by)(1+a−ax−by)

Step-by-step explanation:

hope it helps you

Answered by bbjmkumar
0

Answer:

aby+by-(ax+by)×2

Step-by-step explanation:

2ax+by-aby+by

Similar questions