Math, asked by shreshth40, 10 months ago

ax + b
1<x<5
1. If f(x)= 7x-5 5 5x<10 is continuous, then (a, b) is equal to :
bx + 3a x 10
(D) (0,0)
(C) (10,5)
(B) (5,5)
(A) (5, 10)​

Answers

Answered by pulakmath007
5

SOLUTION

TO CHOOSE THE CORRECT OPTION

\sf  f(x) = \begin{cases} &amp; \sf{  (ax + b) \:   \:  \: \: when \: 1 \leqslant x &lt; 5} \\  \\ &amp; \sf{ (7x  - 5) \:  \:  \:  \:  \: when \: 5 \leqslant x &lt; 10}  \\  \\ &amp; \sf{ (bx   + 3a) \:  \:  \:  \:  \: when \: x \geqslant 10} \end{cases}\\ \\

f(x) is continuous (a, b) =

(A) (5, 10)

(B) (5, 5)

(C) (10,5)

(D) (0,0)

EVALUATION

Here by the given :

\sf  f(x) = \begin{cases} &amp; \sf{  (ax + b) \:   \:  \: \: when \: 1 \leqslant x &lt; 5} \\  \\ &amp; \sf{ (7x  - 5) \:  \:  \:  \:  \: when \: 5 \leqslant x &lt; 10}  \\  \\ &amp; \sf{ (bx   + 3a) \:  \:  \:  \:  \: when \: x \geqslant 10} \end{cases}\\ \\

By the given condition f(x) is continuous

So f(x) is continuous at x = 5

\displaystyle  \sf{\lim_{x \to 5  + } f(x) = \lim_{x \to 5 - } f(x)}

\displaystyle  \sf{ \implies \: \lim_{x \to 5  + } (7x - 5) = \lim_{x \to 5 - }(ax + b)}

\displaystyle  \sf{ \implies \:  (35 - 5) =(5a + b)}

\displaystyle  \sf{ \implies \:  (5a + b) = 35 \:  \:  \:  -  -  - (1)}

Again f(x) is continuous at x = 10

\displaystyle  \sf{\lim_{x \to 10  + } f(x) = \lim_{x \to 10 - } f(x)}

\displaystyle  \sf{ \implies \: \lim_{x \to 10  + } (bx + 3a) = \lim_{x \to 10- }(7x - 5)}

\displaystyle  \sf{ \implies \: (10b + 3a) = 70 - 5}

\displaystyle  \sf{ \implies \: (10b + 3a) = 65 \:  \:  \:  -  -  - (2)}

Solving Equation 1 and Equation 2 we get

a = 5 & b = 5

FINAL ANSWER

Hence the correct option is (B) (5,5)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Attachments:
Similar questions