Math, asked by Arpanmandal, 1 year ago

ax+b/a+bx=cx+d/c+dx where x not equals to - a/b, - c/d

Answers

Answered by MaheswariS
9

\textbf{Given:}

\mathsf{\dfrac{ax+b}{a+bx}=\dfrac{cx+d}{c+dx}}

\textbf{To find:}

\textsf{Solution of the given equation}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{ax+b}{a+bx}=\dfrac{cx+d}{c+dx}}

\mathsf{(ax+b)(c+dx)=(a+bx)(cx+d)}

\mathsf{acx+adx^2+bc+bdx=acx+ad+bcx^2+bdx}

\mathsf{adx^2+bc=ad+bcx^2}

\mathsf{(ad-bc)x^2=ad-bc}

\mathsf{x^2=1}

\implies\mathsf{x=\pm1}

\textbf{Answer:}

\mathsf{Solution\;set\is\;\{1,-1\}}

\textbf{Find more:}

Factorise a/x-a +b/x-b = 2c/x-c

https://brainly.in/question/1538723

Answered by mahek77777
8

\textbf{Given:}

\mathsf{\dfrac{ax+b}{a+bx}=\dfrac{cx+d}{c+dx}}

\textbf{To find:}

\textsf{Solution of the given equation}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{\dfrac{ax+b}{a+bx}=\dfrac{cx+d}{c+dx}}

\mathsf{(ax+b)(c+dx)=(a+bx)(cx+d)}

\mathsf{acx+adx^2+bc+bdx=acx+ad+bcx^2+bdx}

\mathsf{adx^2+bc=ad+bcx^2}

\mathsf{(ad-bc)x^2=ad-bc}

\mathsf{x^2=1}

\implies\mathsf{x=\pm1}

\textbf{Answer:}

\mathsf{Solution  set  is\{1,-1\}}

[

Similar questions