Math, asked by shivansh4508, 2 months ago

ax+by=1 and bx+ay=2ab/a2+b2
find x and y​

Answers

Answered by aryan073
1

Given :

•The given equation are

 \bullet \bf \: ax + by = 1 \:  \:  \:  \: ...(1)

  \\ \bullet \bf \: bx + ay =  \frac{2ab}{ {a}^{2}  +  {b}^{2} }  \:  \: ....(2)

To Find :

•The value of x and y =?

Solution :

The given equation are :

 \bf \bullet \:  ax + by = 1 \:  \: ...(1)

  \\ \bullet \bf \: bx + ay =  \frac{2ab}{ {a}^{2}  +  {b}^{2} }

By cross multiplication rule, we get

  \\ \implies \sf \:  \frac{x}{ \frac{ - 2a {b}^{2}  +a }{ {a}^{2} +  {b}^{2}  } }  =  \frac{y}{  - b + \frac{2 {a}^{2} b}{ {a}^{2}  +  {b}^{2} } }  =  \frac{1}{ {a}^{2}  -  {b}^{2} }

 \\  \implies \sf \:  \frac{x}{ \frac{ - 2a {b}^{2}  +  {a}^{3}  + a {b}^{2} }{ {a}^{2}  +  {b}^{2} } }  =  \frac{y}{ \frac{ -  {a}^{2}b -  {b}^{3}   + 2 {a}^{2}b }{ {a}^{2} +  {b}^{2}  } }  =  \frac{1}{ {a}^{2}  -  {b}^{2} }

  \\ \implies \sf \:  \frac{x}{ \frac{ {a}^{3} -  a{b}^{2}  }{ {a}^{2}  +  {b}^{2} } }  =  \frac{y}{ \frac{ {a}^{2}b -  {b}^{3}  }{ {a}^{2}  +  {b}^{2} } }  =  \frac{1}{ {a}^{2}  -  {b}^{2} }

  \\ \implies \sf \:  \frac{x}{ \frac{a( {a}^{2} -  {b}^{2} ) }{ {a}^{2}  +  {b}^{2} } }  =  \frac{y}{ \frac{b( {a}^{2}  -  {b}^{2}) }{ {a}^{2}  +  {b}^{2} } }  =  \frac{1}{ {a}^{2}  -  {b}^{2} }

  \\ \implies \sf \:  \frac{x}{ \frac{a}{ {a}^{2}  +  {b}^{2} } }  = 1

 \implies \boxed{ \bf{ x =  \frac{a}{ {a}^{2} +  {b}^{2}  } }}

And,

  \\ \implies \sf \: \frac{y}{ \frac{b}{ {a}^{2} +  {b}^{2}  } }  = 1

 \implies \boxed{ \bf{y =  \frac{b}{ {a}^{2}  +  {b}^{2} } }}

The value of x and y is :

 \\  \implies \boxed{ \sf{x =  \frac{a}{ {a}^{2}  +  {b}^{2} }  \:  \: and \:  \: y =  \frac{b}{ {a}^{2}  +  {b}^{2} } }}

Answered by TYKE
0

Step-by-step explanation:

Given :

•The given equation are

\bullet \bf \: ax + by = 1 \: \: \: \: ...(1)∙ax+by=1...(1)

\begin{gathered} \\ \bullet \bf \: bx + ay = \frac{2ab}{ {a}^{2} + {b}^{2} } \: \: ....(2)\end{gathered}

∙bx+ay=

a

2

+b

2

2ab

....(2)

To Find :

•The value of x and y =?

Solution :

The given equation are :

\bf \bullet \: ax + by = 1 \: \: ...(1)∙ax+by=1...(1)

\begin{gathered} \\ \bullet \bf \: bx + ay = \frac{2ab}{ {a}^{2} + {b}^{2} } \end{gathered}

∙bx+ay=

a

2

+b

2

2ab

By cross multiplication rule, we get

\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{ - 2a {b}^{2} +a }{ {a}^{2} + {b}^{2} } } = \frac{y}{ - b + \frac{2 {a}^{2} b}{ {a}^{2} + {b}^{2} } } = \frac{1}{ {a}^{2} - {b}^{2} } \end{gathered}

a

2

+b

2

−2ab

2

+a

x

=

−b+

a

2

+b

2

2a

2

b

y

=

a

2

−b

2

1

\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{ - 2a {b}^{2} + {a}^{3} + a {b}^{2} }{ {a}^{2} + {b}^{2} } } = \frac{y}{ \frac{ - {a}^{2}b - {b}^{3} + 2 {a}^{2}b }{ {a}^{2} + {b}^{2} } } = \frac{1}{ {a}^{2} - {b}^{2} } \end{gathered}

a

2

+b

2

−2ab

2

+a

3

+ab

2

x

=

a

2

+b

2

−a

2

b−b

3

+2a

2

b

y

=

a

2

−b

2

1

\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{ {a}^{3} - a{b}^{2} }{ {a}^{2} + {b}^{2} } } = \frac{y}{ \frac{ {a}^{2}b - {b}^{3} }{ {a}^{2} + {b}^{2} } } = \frac{1}{ {a}^{2} - {b}^{2} } \end{gathered}

a

2

+b

2

a

3

−ab

2

x

=

a

2

+b

2

a

2

b−b

3

y

=

a

2

−b

2

1

\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{a( {a}^{2} - {b}^{2} ) }{ {a}^{2} + {b}^{2} } } = \frac{y}{ \frac{b( {a}^{2} - {b}^{2}) }{ {a}^{2} + {b}^{2} } } = \frac{1}{ {a}^{2} - {b}^{2} } \end{gathered}

a

2

+b

2

a(a

2

−b

2

)

x

=

a

2

+b

2

b(a

2

−b

2

)

y

=

a

2

−b

2

1

\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{a}{ {a}^{2} + {b}^{2} } } = 1\end{gathered}

a

2

+b

2

a

x

=1

\implies \boxed{ \bf{ x = \frac{a}{ {a}^{2} + {b}^{2} } }}⟹

x=

a

2

+b

2

a

And,

\begin{gathered} \\ \implies \sf \: \frac{y}{ \frac{b}{ {a}^{2} + {b}^{2} } } = 1\end{gathered}

a

2

+b

2

b

y

=1

\implies \boxed{ \bf{y = \frac{b}{ {a}^{2} + {b}^{2} } }}⟹

y=

a

2

+b

2

b

The value of x and y is :

[tex] \begin{gathered} \\ \implies \boxed{ \sf{x = \frac{a}{ {a}^{2} + {b}^{2} } \: \: and \: \: y = \frac{b}{ {a}^{2} + {b}^{2} } }}\end{gathered} [\tex]

x=

a

2

+b

2

a

andy=

a

2

+b

2

b. pls report this answer I wrote it mistakely.

Similar questions