ax+by=1 and bx+ay=2ab/a2+b2
find x and y
Answers
Given :
•The given equation are
To Find :
•The value of x and y =?
Solution :
The given equation are :
By cross multiplication rule, we get
And,
The value of x and y is :
Step-by-step explanation:
Given :
•The given equation are
\bullet \bf \: ax + by = 1 \: \: \: \: ...(1)∙ax+by=1...(1)
\begin{gathered} \\ \bullet \bf \: bx + ay = \frac{2ab}{ {a}^{2} + {b}^{2} } \: \: ....(2)\end{gathered}
∙bx+ay=
a
2
+b
2
2ab
....(2)
To Find :
•The value of x and y =?
Solution :
The given equation are :
\bf \bullet \: ax + by = 1 \: \: ...(1)∙ax+by=1...(1)
\begin{gathered} \\ \bullet \bf \: bx + ay = \frac{2ab}{ {a}^{2} + {b}^{2} } \end{gathered}
∙bx+ay=
a
2
+b
2
2ab
By cross multiplication rule, we get
\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{ - 2a {b}^{2} +a }{ {a}^{2} + {b}^{2} } } = \frac{y}{ - b + \frac{2 {a}^{2} b}{ {a}^{2} + {b}^{2} } } = \frac{1}{ {a}^{2} - {b}^{2} } \end{gathered}
⟹
a
2
+b
2
−2ab
2
+a
x
=
−b+
a
2
+b
2
2a
2
b
y
=
a
2
−b
2
1
\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{ - 2a {b}^{2} + {a}^{3} + a {b}^{2} }{ {a}^{2} + {b}^{2} } } = \frac{y}{ \frac{ - {a}^{2}b - {b}^{3} + 2 {a}^{2}b }{ {a}^{2} + {b}^{2} } } = \frac{1}{ {a}^{2} - {b}^{2} } \end{gathered}
⟹
a
2
+b
2
−2ab
2
+a
3
+ab
2
x
=
a
2
+b
2
−a
2
b−b
3
+2a
2
b
y
=
a
2
−b
2
1
\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{ {a}^{3} - a{b}^{2} }{ {a}^{2} + {b}^{2} } } = \frac{y}{ \frac{ {a}^{2}b - {b}^{3} }{ {a}^{2} + {b}^{2} } } = \frac{1}{ {a}^{2} - {b}^{2} } \end{gathered}
⟹
a
2
+b
2
a
3
−ab
2
x
=
a
2
+b
2
a
2
b−b
3
y
=
a
2
−b
2
1
\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{a( {a}^{2} - {b}^{2} ) }{ {a}^{2} + {b}^{2} } } = \frac{y}{ \frac{b( {a}^{2} - {b}^{2}) }{ {a}^{2} + {b}^{2} } } = \frac{1}{ {a}^{2} - {b}^{2} } \end{gathered}
⟹
a
2
+b
2
a(a
2
−b
2
)
x
=
a
2
+b
2
b(a
2
−b
2
)
y
=
a
2
−b
2
1
\begin{gathered} \\ \implies \sf \: \frac{x}{ \frac{a}{ {a}^{2} + {b}^{2} } } = 1\end{gathered}
⟹
a
2
+b
2
a
x
=1
\implies \boxed{ \bf{ x = \frac{a}{ {a}^{2} + {b}^{2} } }}⟹
x=
a
2
+b
2
a
And,
\begin{gathered} \\ \implies \sf \: \frac{y}{ \frac{b}{ {a}^{2} + {b}^{2} } } = 1\end{gathered}
⟹
a
2
+b
2
b
y
=1
\implies \boxed{ \bf{y = \frac{b}{ {a}^{2} + {b}^{2} } }}⟹
y=
a
2
+b
2
b
The value of x and y is :
[tex] \begin{gathered} \\ \implies \boxed{ \sf{x = \frac{a}{ {a}^{2} + {b}^{2} } \: \: and \: \: y = \frac{b}{ {a}^{2} + {b}^{2} } }}\end{gathered} [\tex]
⟹
x=
a
2
+b
2
a
andy=
a
2
+b
2
b. pls report this answer I wrote it mistakely.