Math, asked by rajeshsingh95928, 3 months ago

ax+by=1
bx+ay=(a+b)²/a²+b²-1​

Answers

Answered by mathdude500
7

Given Question :-

Solve the pair of linear equations :-

\rm :\longmapsto\:ax + by = 1

and

\rm :\longmapsto\:bx + ay = \dfrac{ {(a + b)}^{2} }{ {a}^{2}   + {b}^{2} }  - 1 -  -  - (2)

Answer :-

Basic Concept Used :-

There are 4 methods to solve this type of pair of linear equations.

  • 1. Method of Substitution

  • 2. Method of Eliminations

  • 3. Method of Cross Multiplication

  • 4. Graphical Method

We prefer here Method of Eliminations :-

To solve systems using elimination, follow this procedure:

  • Step 1: Multiply each equation by a suitable number so that the two equations have the same leading coefficient.

  • Step 2: Subtract the second equation from the first so that Equation reduces to one variable.

  • Step 3: Solve this new equation for one variable.

  • Step 4: Substitute this variable in any of the Equation 1 or Equation 2 above and solve for other variable.

Let's solve the problem now!!

\rm :\longmapsto\:ax + by = 1 -  -  - (1)

and

\rm :\longmapsto\:bx + ay = \dfrac{ {(a + b)}^{2} }{ {a}^{2}   + {b}^{2} }  - 1

can be further simplified as

\rm :\longmapsto\:bx + ay = \dfrac{ {a}^{2} +  {b}^{2} + 2ab -  {a}^{2} -  {b}^{2}}{ {a}^{2}   + {b}^{2} }

\rm :\longmapsto\:bx + ay = \dfrac{2ab }{ {a}^{2}   + {b}^{2} } -  -  - (2)

Now, multiply equation (1) by b, we get

\rm :\longmapsto\:abx +  {b}^{2} y = b  - -  - (3)

Now, multiply equation (2) by a, we get

\rm :\longmapsto\:abx +  {a}^{2}y = \dfrac{2b {a}^{2} }{ {a}^{2}  +  {b}^{2} }   -  -  - (4)

Now, Subtracting equation (4) from equation (3), we get

\rm :\longmapsto\: {b}^{2}y -  {a}^{2}y = b - \dfrac{2b {a}^{2} }{ {a}^{2}  +  {b}^{2} }

\rm :\longmapsto\:y( {b}^{2} -  {a}^{2}) = \dfrac{ {ba}^{2}  +  {b }^{3} -  {2ba}^{2}  }{ {a}^{2}  +  {b}^{2} }

\rm :\longmapsto\:y( {b}^{2} -  {a}^{2}) = \dfrac{{b }^{3} -  {ba}^{2}  }{ {a}^{2}  +  {b}^{2} }

\rm :\longmapsto\:y \cancel{({b}^{2} -  {a}^{2})} = \dfrac{b \:  \:  \cancel{({b }^{2} -  {a}^{2})}}{ {a}^{2}  +  {b}^{2} }

\bf\implies \:y = \dfrac{b}{ {b}^{2}  +  {a}^{2} }  -  -  - (5)

Now, Substitute the value of 'y' in equation (1), we get

\rm :\longmapsto\:ax + \dfrac{{b}^{2} }{ {a}^{2} +  {b}^{2}}  = 1

\rm :\longmapsto\:ax = 1 -  \dfrac{ {b}^{2} }{ {a}^{2} +  {b}^{2}  }

\rm :\longmapsto\:ax =  \dfrac{ {b}^{2} +  {a}^{2} -  {b}^{2}}{ {a}^{2} +  {b}^{2}}

\rm :\longmapsto\:ax =  \dfrac{ {a}^{2} }{ {a}^{2} +  {b}^{2}  }

\bf\implies \:x = \dfrac{a}{ {a}^{2} +  {b}^{2} }  -  -  - (6)

Hence,

 \boxed{ \bf \: x = \dfrac{a}{ {a}^{2} +  {b}^{2} }} \:  \:  \:  \: and \:  \:  \:  \:  \boxed{ \bf \: y = \dfrac{b}{ {a}^{2} +  {b}^{2} }}

Similar questions