ax+by=1, bx-ay=a+b find the value of x and y
Answers
Answered by
42
Ax+by=a-b
ax=a-b-by
x=a-b-by/a←
bx-ay=a+b
substituting
b(a-b-by/a)-ay=a+b
ab-b²-b²y/a-ay=a+b
ab-b²-b²y-a²y/a=a+b
ab-b²-(b²+a²)y=a²+ab
-(b²+a²)y=a²+ab-ab+b²
(b²+a²)y=-(a²+b²)
y=-(a²+b²)/a²+b²
y=-1←
substituting value of y
x=a-b-b(-1)/a
x=a-b+b/a
x=a/a
x=1
Answered by
1
Answer:
:
Multiply this equation to b
abx+b^2(y)=ab-b^2
bx-ay=a+b
Multiply it by a
abx-a^2(y)=a^2+ab
Solve both equations
Subtract it
y(a^2+b^2)=-(a^2+b^2)
y=-1
Second equation
bx-ay=a+b
bx+a=a+b
bx=b
x=1
So y=-1 and x=1
Similar questions