Math, asked by priyal230906, 1 year ago

( ax + by ) ² + ( ay - bx )² factories the equation

Answers

Answered by Anonymous
4

# ANSWER !!

➡Factorise ..

 ( ax + by )^2 + (ay - bx )^2

Here are two terms ,

So firstly solve the first term , i.e

 ( ax + by )^2

Solve this with the identity  (a+b)^2

 = (ax)^2 + (by)^2 + 2*ax*by

 = a^2x^2 + b^2y^2 + 2abxy

Now , solve the second term ,

 ( ay - bx )^2

Solve this with the identity   (a-b)^2

 = (ay)^2 + (bx)^2 - 2*ay*bx

 = a^2y^2 + b^2x^2 - 2abxy

Now join the two terms as given in the question with (+) sign..

 = a^2x^2 + b^2y^2 + 2abxy + a^2y^2 + b^2x^2 - 2abxy

 = a^2x^2 + b^2y^2 + a^2y^2 + b^2x^2.

Thanks.....☺✌

Answered by tejasgupta
4

 (ax+by)^2 +  (ay - bx)^2  \\<br /><br />= ((ax)^2 + (by)^2 + 2(ax)(by)) + ((ay)^2 + (bx)2 - 2(ay)(bx)) \\<br /><br />= (a^2x^2 + b^2y^2 + 2abxy) + (a^2y^2 + b^2x^2 - 2 abxy) \\<br /><br />=  a^2x^2 + b^2y^2 + 2abxy + a^2y^2 + b^2x^2 - 2 abxy \\<br /><br />= a^2x^2 + b^2y^2 + a^2y^2 + b^2x^2 \\<br /><br />None \: of \: these \: are \: like \: terms \: ......... \\<br /><br />So, \: nothing \: can \: be \: added \: or \: subtracted \: at \: this \: time...... \\<br /><br />Hence, \: this \: must \: be \: the \: answer........

Similar questions