Math, asked by khushali1687, 8 months ago

ax+by=a^2; bx+ay=b^2 solve it by cross multiplication method​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given pair of equations are

\rm :\longmapsto\:ax + by =  {a}^{2}

and

\rm :\longmapsto\:bx + ay =  {b}^{2}

Now, using Cross multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf b & \sf  {a}^{2}  & \sf a & \sf b\\ \\ \sf a & \sf  {b}^{2}  & \sf b & \sf a\\ \end{array}} \\ \end{gathered}

Now, we have

\rm :\longmapsto\:\dfrac{x}{ {b}^{3}  -  {a}^{3} }  = \dfrac{y}{ {ba}^{2}  -  {ab}^{2} }  = \dfrac{ - 1}{ {a}^{2}  -  {b}^{2} }

can be rewritten as

\rm :\longmapsto\:\dfrac{x}{ {b}^{3}  -  {a}^{3} }  = \dfrac{y}{ {ba}^{2}  -  {ab}^{2} }  = \dfrac{1}{ {b}^{2}  -  {a}^{2} }

Also, we know that

\boxed{ \bf{ \:  {b}^{3} -  {a}^{3} = (b - a)( {b}^{2} +  ab + {a}^{2}}}

and

\boxed{ \bf{ \:  {a}^{2} -  {b}^{2}  = (a - b)(a + b)}}

So, using these, we get

\rm :\longmapsto\:\dfrac{x}{(b - a)( {b}^{2} +  ab + {a}^{2})}  = \dfrac{y}{ ab(a - b)}  = \dfrac{1}{(b - a)(b + a)}

Multiply each term by b - a, we get

\rm :\longmapsto\:\dfrac{x}{{b}^{2} +  ab + {a}^{2}}  = \dfrac{y}{  - ab}  = \dfrac{1}{b + a}

Taking first and second member, we get

\rm :\longmapsto\:\dfrac{x}{{b}^{2} +  ab + {a}^{2}} = \dfrac{1}{b + a}

\bf:\longmapsto\:x= \dfrac{ {b}^{2} + ab +  {a}^{2}  }{b + a}

Taking second and third member, we get

\rm :\longmapsto\: \dfrac{y}{  - ab}  = \dfrac{1}{b + a}

\bf :\longmapsto\: y  = \dfrac{ - ab}{b + a}

VERIFICATION :-

Consider first equation, we have

\rm :\longmapsto\:ax + by =  {a}^{2}

On substituting the values of a and b, we get

\rm :\longmapsto\:a\bigg(\dfrac{ {b}^{2} + ab +  {a}^{2}  }{b + a}  \bigg)  + b\bigg(\dfrac{ - ab}{b + a} \bigg)  =  {a}^{2}

\rm :\longmapsto\:\bigg(\dfrac{ {ab}^{2} +  {a}^{2} b +  {a}^{3}  }{b + a}  \bigg)  - \bigg(\dfrac{a {b}^{2} }{b + a} \bigg)  =  {a}^{2}

\rm :\longmapsto\:\dfrac{ {ab}^{2} +  {a}^{2} b +  {a}^{3}   -  {ab}^{2} }{b + a}    =  {a}^{2}

\rm :\longmapsto\:\dfrac{{a}^{2} b +  {a}^{3}}{b + a}    =  {a}^{2}

\rm :\longmapsto\:\dfrac{{a}^{2} (b +  {a}^{})}{b + a}    =  {a}^{2}

\bf\implies \: {a}^{2} =  {a}^{2}

Hence, Verified

Similar questions