ax+by=a-b, bx-ay=a+b,. Solve the pair of leniar equations
Answers
Answered by
1
Answer:
hi
Step-by-step explanation:
ax+by=a-b
ax=a-b-by
x=a-b-by/a←
bx-ay=a+b
substituting
b(a-b-by/a)-ay=a+b
ab-b²-b²y/a-ay=a+b
ab-b²-b²y-a²y/a=a+b
ab-b²-(b²+a²)y=a²+ab
-(b²+a²)y=a²+ab-ab+b²
(b²+a²)y=-(a²+b²)
y=-(a²+b²)/a²+b²
y=-1←
substituting value of y
x=a-b-b(-1)/a
x=a-b+b/a
x=a/a
x=1
Answered by
2
Answer:
ax + by = a - b.................(1)
bx - ay = a + b.....................(2)
Taking (1),
ax + by = (a - b)
⇒ x = (a - b - by)/a
Substituting the value of x in (2), we get,
b{(a - b - by)/a} - ay = a + b
⇒ ab - b² - b²y - a²y = a² + ab
⇒ -y (a² + b²) = a² + b² + ab - ab
⇒ -y (a² + b²) = (a² + b²)
⇒ -y = 1
⇒ y = -1
Substituting y = -1 in (1), we get,
ax + b(-1) = a - b
⇒ ax - b = a - b
⇒ ax = a
⇒ x = 1
Hope it helps you...
Similar questions