Math, asked by StarlightPhoenix, 2 months ago

ax + by = c , bx + ay =1 + c
solve for x and y for the following pair of equation. ​

Answers

Answered by anubhabkumar2020
4

Answer:

Please check out the attachment given above

Attachments:
Answered by tennetiraj86
4

Step-by-step explanation:

Given :-

ax + by = c ,

bx + ay =1 + c

To find :-

Solve for x and y for the following pair of equation?

Solution :-

Given pair of linear equations in two variables are

ax + by = c ---------(1)

and

bx + ay =1 + c--------(2)

On adding (1)&(2) then

ax+by = c

bx+ay = 1+c

(+)

________________

(a+b)x +(a+b)y = 1+2c

________________

=> (a+b)x +(a+b)y = 1+2c

=> (a+b)(x+y) = 1+2c

=>x+y = (1+2c)/(a+b) ---------(3)

On Subtracting (2) from (1) then

ax+by = c

bx+ay = 1+c

(-)

________________

(a-b)x +(b-a)y = (c-1-c)

________________

=>(a-b)x +(b-a)y = (c-1-c)

=> (a-b)x -(a-b)y = -1

=> (a-b)(x-y) = -1

=> x-y = -1/(a-b) ----------(4)

On adding (3)&(4) then

x+y = (1+2c)/(a+b)

x-y = -1/(a-b)

(+)

______________________

2x+0 = [(1+2c)/(a+b)]+[-1/(a-b)]

_______________________

=> 2x = [(1+2c)/(a+b)]+[-1/(a-b)]

=> 2x = [(1+2c)(a-b)+(-1)(a+b)]/(a+b)(a-b)

=> 2x = [(a-b+2ac-2bc -a-b)/(a²-b²)]

=> 2x = (2ac-2bc-2b)/(a²-b²)

=> 2x = 2(ac-bc-b)/(a²-b²)

=> x = (ac-bc-b)/(a²-b²) -----------(5)

On Substituting the value of x in (4)

x-y = -1/(a-b)

=>[(ac-bc-b)/(a²-b²)]- y= -1/(a-b)

=> y = [(ac-bc-b)/(a²-b²)]+[1/(a-b)]

=>y = [(ac-bc-b+1(a+b)]/(a²-b²)

=> y = (ac-bc-b+a+b)/(a²-b²)

=> y = (ac-bc+a)/(a²-b²) ---------(6)

Answer:-

The value of x = (ac-bc-b)/(a²-b²)

The value of y = (ac-bc+a)/(a²-b²)

Check :-

We have

x = (ac-bc-b)/(a²-b²)

y = (ac-bc+a)/(a²-b²)

LHS of (1)

=> ax+by

=>a((ac-bc-b)/(a²-b²))+b((ac-bc+a)/(a²-b²)

=> [a(ac-bc-b)+b(ac-bc+a)]/(a²-b²)

=> (a²c-abc-ab+abc-b²c+ab)/(a²-b²)

=> (a²c-b²c)/(a²-b²)

=> c(a²-b²)/(a²-b²)

=> c

=> RHS

LHS = RHS

LHS of (2)

bx + ay

=> b((ac-bc-b)/(a²-b²))+a((ac-bc+a)/(a²-b²)

=> [b(ac-bc-b)+a(ac-bc+a)]/(a²-b²)

=> (abc-b²c-b²+a²c-abc+a²)/(a²-b²)

=> (a²c+a²-b²c-b²)/(a²-b²)

=>[a²(c+1)-b²(c+1)]/(a²-b²)

=> (c+1)(a²-b²)/(a²-b²)

=> c+1

=> RHS

=> LHS = RHS

Verified the given relations in the given problem

Similar questions