Math, asked by sahilkalange19, 11 months ago

AXB is a semicircle AB is a diameter, AB = 12 AYB is a arc having measure 120 find the area of shaded rigion​

Attachments:

Answers

Answered by ismailmansoori004
3

Answer:

ar \: of \: semi \: circle = \pi \times 6 \times 6 \div 2  - \pi \times 6 \times 6 \div 3 =  \\  \\  \\

Answered by roshinik1219
0

Given:

  • AXB is a semicircle AB is a diameter, AB = 12
  • AYB is a arc having measure 120

To Find:

  • The area of shaded region​ .

Solution:

Diameter = 12 unit

Radius  = \frac{12}{2} = 6\ unit

Now,

AYB is an arc having 120°

Area of the semicircle =  \frac{\pi \ r^2 }{2}

                                       = \frac{22}{2 \times 2}  \times (6)^2

                                     = 56.52 \ square \ unit

Thus, Area of the semicircle = 56.52 \ square \ unit

Area of the sector  = \frac{\pi \ r^2 \theta }{360^\circ}

                                  = \frac{22 \times (6)^2 \times 120^\circ }{7 \times 360^\circ}                      

                                 = 37.68 \ square \ units

Thus, the area of the sector  = 37.68 \ square \ units

Area of the shaded region =Area \ of \ the \ semicircle - Area \ of \ the \ sector

                                             = 56.52 - 37.68

                                             = 18.84 \ square \  units

Hence, the area of the shaded region = 18.84 \ square \  units

Similar questions