(b) 1+[1-tan theta/1-cot theta]^2
= sec2 theta
Answers
Answered by
6
Answer:
Step-by-step explanation:
1 + [1 - Tanθ/1 - Cotθ]²
= 1 + [1 - Sinθ/Cosθ/1 - Cosθ/Sinθ]²
= 1 + [Cosθ - Sinθ/Cosθ/Sinθ-Cosθ/Sinθ]²
= 1 + Sin²θ/Cos²θ[Cosθ - Sinθ/Sinθ - Cosθ]²
= 1 + Tan²θ[Cos²θ + Sin²θ - 2SinθCosθ/Sin²θ + Cos²θ - 2SinθCosθ]
= 1 + Tan²θ[1 - Sin2θ/ 1 - Sin2θ]
= 1 + Tan²θ
= Sec²θ
= R.H.S.
Hence proved.
Answered by
8
Answer:
Therefore,
•••♪
Similar questions