Math, asked by ibranansari9824, 10 months ago

b^2-10b+32=o, then b=? ​

Answers

Answered by ItSdHrUvSiNgH
0

Step-by-step explanation:

 \huge\underline{\underline{\ Question}}

______________________________________

 {b}^{2}  - 10b + 32 = 0

Solve and find the value of b.

______________________________________

 \huge\underline{\underline{\ Answer}}

 {b}^{2}  - 10b + 32 = 0 \\ comparing \: with \\  \boxed{a {x}^{2}  + bx + c = 0} \\ a = 1 \\ b =  - 10 \\ c = 32

Now, By using quadratic formula..

 \implies b =  \frac{ - b +  \: or \:  -  \sqrt{ {b}^{2} - 4ac } }{2a}  \\ \implies b =  \frac{10 +  \: or \:  -  \sqrt{100 - 128} }{2}  \\ \implies b =  \frac{10 +  \: or \:  -  \sqrt{ - 28} }{2}

Here, we got negative number under square root

So the roots are not real but you can solve it futher by using complex numbers....

 \implies b =  \frac{10 +  \: or \:  -  \sqrt{28} \times    \sqrt{ - 1} }{2}  \\ \implies b =   \frac{10 +  \: or \:  -  \sqrt{  4 \times 7} \:  \: i }{2}  \\ \implies b =  \frac{10 +  \: or \:  - 2 \sqrt{7} \:  \:  \: i }{2}  \\ \implies b =  \frac{ \cancel2(5 +  \: or \:  -  \sqrt{7}  \: i)}{ \cancel2}  \\  \implies b = 5 +  \: or \:  -  \sqrt{7}  \: i \\ \implies  \huge \boxed{b = 5 +  \sqrt{7}  \:  \: i \: \:   or  \: \: b = 5 -  \sqrt{7}  \: i}

Similar questions