Math, asked by mhshkardile, 1 month ago

B(2,3)
The value of beta function is equal to​

Answers

Answered by TahaSayyed92
0

Answer:

Explanation: \beta(3, 2) = \frac{\Gamma(3).\Gamma(2)}{\Gamma(3+2)}

= \frac{2!1!}{4!} = \frac{1}{12}.

Answered by pulakmath007
2

\displaystyle \sf{B(2,3) =  \frac{1 }{12}   }

Given :

The beta function B(2,3)

To find :

The value of function

Solution :

Step 1 of 3 :

Write down the given function

The beta function is B(2,3)

Step 2 of 3 :

Express in terms of Gamma function

\displaystyle \sf{  B(x,y) =  \frac{ \Gamma (x)\Gamma (y)}{\Gamma (x + y)} }

Thus we get

\displaystyle \sf{  B(2,3) =  \frac{ \Gamma (2)\Gamma (3)}{\Gamma (2 + 3)} }

\displaystyle \sf{ \implies  B(2,3) =  \frac{ \Gamma (2)\Gamma (3)}{\Gamma (5)} }

Step 3 of 3 :

Find the value of the function

We use the formula

 \sf \Gamma (n + 1) =n!

Thus we get

\displaystyle \sf{   B(2,3)  }

\displaystyle \sf{    =  \frac{ \Gamma (2)\Gamma (3)}{\Gamma (5)} }

\displaystyle \sf{   =  \frac{1! \: 2! }{4!} }

\displaystyle \sf{   =  \frac{1 \times 2}{4 \times 3 \times 2} }

\displaystyle \sf{   =  \frac{1 }{12} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. write the expression for gradient and divergence

https://brainly.in/question/32412615

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

Similar questions