Math, asked by AnanyaBaalveer, 2 days ago

(b + 4)² + 4(b + 4) - 21​

Answers

Answered by bangisameena07
3

Step-by-step explanation:

 {(b + 4)}^{2}  + 4(b + 4) - 21 \\ (b + 4)(b + 4) + 4(b + 4) - 21 \\ b(b + 4) + 4(b + 4) + 4(b + 4) - 21 \\ b(b + 4) + 8(b + 4) - 21 \\  {b}^{2}  + 4b + 8b + 32 - 21 \\   {b}^{2}  + 4b + 8b + 11 \\  {b}^{2}  + 12b + 11 \\  {b}^{2}  + 11b + b + 11 \\ b(b +1 1) + b + 11 \\ (b + 1)(b + 11)

Thanx

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {(b + 4)}^{2} + 4(b + 4) - 21 \\

Let assume that

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \red{ \:  \: \boxed{ \rm{ \:b + 4 = x \: }}} \\

So, above expression can be rewritten as

\rm \:  =  \:  {x}^{2} + 4x - 21 \\

Now, on splitting the middle terms, we get

\rm \:  =  \:  {x}^{2} + 7x - 3x - 21 \\

\rm \:  =  \: x(x + 7) - 3(x + 7) \\

\rm \:  =  \: (x + 7)(x - 3) \\

On substituting the value of x = b + 4, we get

\rm \:  =  \: (b + 4 + 7)(b + 4 - 3) \\

\rm \:  =  \: (b + 11)(b + 1) \\

Hence,

 \red{\boxed{ \rm{{(b + 4)}^{2} + 4(b + 4) - 21  =  \: (b + 11)(b + 1)}}} \\

\rule{190pt}{2pt}

Basic Concept :-

Splitting of middle terms :-

In order to factorize  ax² + bx + c we have to find numbers m and n such that m + n = b and mn = ac.

After finding m and n, we split the middle term i.e bx in the quadratic equation as mx + nx and get the required factors by grouping the terms.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions