Physics, asked by rinkusandhi57, 10 months ago

(b) A bomb weighing 50 kg explodes into three
parts in flight when its velocity is
20 î+22j +10k ms-1. Two fragments of the
bomb weighing 10 kg and 20 kg are found to
have velocities 100 i + 50j +20k and
30 î – 20j – 10Â ms-l respectively. Find the
velocity of the third fragment.​

Answers

Answered by shailendrachoubay216
5

The  velocity of the third fragment is -30\hat{i}+50\hat{j}+25\hat{k}

Explanation:

1. We know that during explosion total momentum is conserved.

  means

 initial momentum = final momentum

2. M\vec{u}=M_{1}\vec{v_{1}}+M_{2}\vec{v_{2}}+M_{3}\vec{v_{3}}    ...1)

3. \vec{u}= initial velocity in x- direction =(20\hat{i}+22\hat{j}+10\hat{k}) (\frac{m}{s})

\vec{v_{1}} = final velocity of mass 10 kg =(100\hat{i}+50\hat{j}+20\hat{k})

  \vec{v_{2}} = final velocity of mass 20 kg =(30\hat{i}-20\hat{j}-10\hat{k})

\vec{v_{3}}= final velocity of third mass 20 kg = (v_{x}\hat{i}+v_{y}\hat{j}+v_{z}\hat{k})

4. From equation 1)

   50 (20\hat{i}+22\hat{j}+10\hat{k})= 10(100\hat{i}+50\hat{j}+20\hat{k})+20(30\hat{i}-20\hat{j}-10\hat{k})+20(v_{x}\hat{i}+v_{y}\hat{j}+v_{z}\hat{k})

5. On comparing corresponding term

  First \hat{i}

   50×20= 10×100+20×30+20v_{x}

  So v_{x}= -30(\frac{m}{s})

  Second \hat{j}

 50×22= 10×50-20×20+20v_{y}

 So v_{y}= 50(\frac{m}{s})

Third \hat{k}

 50×10= 10×20-20×10+20v_{z}

 So v_{z}= 25(\frac{m}{s})

6. So velocity of third fragment = -30\hat{i}+50\hat{j}+25\hat{k}

Similar questions