B. A disc is spun with angular velocity omega nod
, and gently kept on a rough hroizontal floor. Find the work done by friction till the centre of the disc moves through a distance x, by applying work energy theorem.
Answers
Answer:
What happens to the work done on a system? Energy is transferred into the system, but in what form? Does it remain in the system or move on? The answers depend on the situation. For example, if the lawn mower in Figure 1a is pushed just hard enough to keep it going at a constant speed, then energy put into the mower by the person is removed continuously by friction, and eventually leaves the system in the form of heat transfer. In contrast, work done on the briefcase by the person carrying it up stairs in Figure 1d is stored in the briefcase-Earth system and can be recovered at any time, as shown in Figure 1e. In fact, the building of the pyramids in ancient Egypt is an example of storing energy in a system by doing work on the system. Some of the energy imparted to the stone blocks in lifting them during construction of the pyramids remains in the stone-Earth system and has the potential to do work.
Five drawings labeled a through e. In (a), person pushing a lawn mower with a force F. Force is represented by a vector making an angle theta with the horizontal and displacement of the mower is represented by vector d. The component of vector F along vector d is F cosine theta. Work done by the person W is equal to F d cosine theta. (b) A person is standing with a briefcase in his hand. The force F shown by a vector arrow pointing upwards starting from the handle of briefcase and the displacement d is equal to zero. (c) A person is walking holding the briefcase in his hand. Force vector F is in the vertical direction starting from the handle of briefcase and displacement vector d is in horizontal direction starting from the same point as vector F. The angle between F and d theta is equal to 90 degrees. Cosine theta is equal to zero. (d) A briefcase is shown in front of a set of stairs. A vector d starting from the first stair points along the incline of the stair and a force vector F is in vertical direction starting from the same point as vector d. The angle between them is theta. A component of vector F along vector d is F d cosine theta. (e) A briefcase is shown lowered vertically down from an electric generator. The displacement vector d points downwards and force vector F points upwards acting on the briefcase.
Figure 1. examples of work. (a) The work done by the force F on this lawn mower is Fd cos θ. Note that F cos θ is the component of the force in the direction of motion. (b) A person holding a briefcase does no work on it, because there is no motion. No energy is transferred to or from the briefcase. (c) The person moving the briefcase horizontally at a constant speed does no work on it, and transfers no energy to it. (d) Work is done on the briefcase by carrying it up stairs at constant speed, because there is necessarily a component of force F in the direction of the motion. Energy is transferred to the briefcase and could in turn be used to do work. (e) When the briefcase is lowered, energy is transferred out of the briefcase and into an electric generator. Here the work done on the briefcase by the generator is negative, removing energy from the briefcase, because F and d are in opposite directions.
In this section we begin the study of various types of work and forms of energy. We will find that some types of work leave the energy of a system constant, for example, whereas others change the system in some way, such as making it move. We will also develop definitions of important forms of energy, such as the energy of motion.
mark me brainliests plz