Physics, asked by raamnari00, 7 months ago

(b) A train staring from rest attains a velocity of 72 km/h in 5 minutes. Assuming that the acceleration is uniform, find out the
(i) acceleration
(ii) the distance travelled by the train for attending this velocity?​

Answers

Answered by mansoorkhan40233
1

Explanation:

0.24 velocity travelled by the train

acceleration does not change

Answered by ArcaneAssassin
117

 \huge\sf { \dag Question: }

A train starting from rest attains a velocity of 72 km/h in 5 minutes. Assuming that the acceleration is uniform, find out the

(i) acceleration

(ii) the distance travelled by the train for attending this velocity?

 \huge\sf { \dag Solution:}

 {\underline {\underline {\rm {\red { \huge Given }}}}}

  •  \sf\pink { u ( initial \: velocity ) = 0}

 \sf { [As \: it \: started \: from \: rest ] }

  •  \sf\pink { v ( final \: velocity ) = 72 km/h= 20m/s}

 \sf \blue { Converting \: to \: its \: standard \: form }

 \sf { ☞  \cancel {{72}}^{ \: \: 4} \times \dfrac {5}{\cancel {18}} }

 \sf { ☞  4 \times 5 = 20m/s}

  •  \sf\pink { t ( time \: taken ) = 5minutes = 300 s}

 \sf \blue { Converting \: to \: its \: standard \: form }

 \sf { ☞ 5 \times 60 = 300 seconds }

 {\underline {\underline {\rm {\red { \huge To \: find: }}}}}

  •  \sf { acceleration }
  •  \sf { total \: distance \: travelled }

 {\underline {\underline {\rm {\red { \huge Calculation: }}}}}

 \sf\purple { To \: find \: acceleration :}

  \tt\green { a = \dfrac{v-u}{t} }

  \sf { :\implies a = \dfrac{20-0}{300} }

  \sf { :\implies a = \dfrac{2\cancel0}{30\cancel0} }

  \sf { :\implies a = \dfrac{\cancel2}{\cancel {30}}= \dfrac{1}{15}m/{s}^{2} }

 \sf {\therefore Acceleration \: of \: the \: train \: was \:  \dfrac{1}{15}m/{s}^{2} }

__ __ __ __ __ __ __

 \sf\purple { To \: find \: total \: distance \: travelled:}

by using second equation of kinematics

  \tt\green { s =ut + \dfrac{1}{2}a{t}^{2} }

  \sf { :\implies s = (0 \times 300 )+ \dfrac{1}{2} \times \dfrac{1}{15} \times 300 \times 300 }

  \sf { :\implies s = \dfrac{1}{2} \times \dfrac{1}{\cancel {15}} \times   {\cancel{300}}^{ \:  \: \: 20 }  \times 300 }

  \sf { :\implies s = \dfrac{1}{2} \times 20 \times 300  }

  \sf { :\implies s = \dfrac{1}{\cancel 2} \times \cancel {6000} = 3000m }

 \sf { In \: km- }

 \sf { 1000m = 1km }

 \sf { so, 3000m = 3km }

 \sf { \therefore Distance \: travelled \: by \: the \: train \: was 3km \: or 3000 m }

___________________

 {\underline {\underline {\rm {\red { \huge Required \: Answers: }}}}}

  •  \sf { \dag Acceleration = \dfrac{1}{15}m/{s}^{2} }

  •  \sf { \dag Distance = 3km \: or 3000 m }

___________________

Similar questions