Math, asked by abhishek70597645, 10 months ago

(b-c)^2 cos^2 (A/2) + (b+c)^2 sin^2 (A/2) =
1) a 2) a^2 3) 2a² 4) a²/2​

Answers

Answered by rajsingh24
0

Answer:

answer is

Step-by-step explanation:

a^2 is the correct

100%correct

Answered by Anonymous
5

Answer:

\bold\red{(2){a}^{2}}

Step-by-step explanation:

Let's denote angle A as Alpha.

Now,

Given,

 {(b - c)}^{2}  { \cos}^{2}  \frac{ \alpha }{2}  +  {(b + c)}^{2}  { \sin}^{2}  \frac{ \alpha }{2}

Expanding,

we get,

 = ( {b}^{2}  +  {c}^{2}  - 2bc) { \cos }^{2} \frac{ \alpha }{2}   + ( {b}^{2}  +  {c}^{2}  + 2bc) { \sin }^{2}  \frac{ \alpha }{2}  \\  \\  =  {b}^{2}( { \sin}^{2}   \frac{ \alpha }{2}  +  { \cos }^{2}  \frac{ \alpha }{2} ) +  {c}^{2} ( { \sin }^{2}   \frac{ \alpha }{2} +  { \cos}^{2}   \frac{ \alpha }{2} ) + 2bc( { \sin }^{2}  \frac{ \alpha }{2}  -  { \cos }^{2}  \frac{ \alpha }{2} ) \\  \\

But,

we know that,

 { \sin}^{2} x +  { \cos }^{2} x = 1 \\  \\ and \\  \\   { \cos }^{2} x -  { \sin}^{2} x =  \cos(2x)

Therefore,

we get,

 =  {b}^{2}  +  {c}^{2}  - 2bc \cos( \alpha )

 =  { \alpha }^{2}

Hence,

the correct option is \bold{(2){a}^{2}}

Similar questions