Math, asked by mahesh0401, 10 months ago

{(b-c)^2}×{cos^2(A/2)}+{(b+c)^2}×{sin^2(A/2)}​

Answers

Answered by Tinasiac2805
2

Answer:

a^{2} \\

Step-by-step explanation:

Using the formulae (x^{2} - y^{2} ) = x^{2} + y^{2} - 2xy\\(x^{2} + y^{2} ) = x^{2} + y^{2} + 2xy

We get,

(c^{2} + b^{2}  -2bc) x^{2} \frac{A}{2}  + (c^{2} + b^{2}  +2bc) x^{2} \frac{A}{2}\\\\=> c^{2} cos^{2} \frac{A}{2}  + b^{2} cos^{2} \frac{A}{2} - 2bc cos^{2} \frac{A}{2} +  c^{2} sin^{2} \frac{A}{2}  + b^{2} sin^{2} \frac{A}{2} + 2bc sin^{2} \frac{A}{2}\\\\=>  c^{2}( cos^{2} \frac{A}{2}+ sin^{2} \frac{A}{2}) +  b^{2}( cos^{2} \frac{A}{2}+ sin^{2} \frac{A}{2}) -2bc ( cos^{2} \frac{A}{2}- sin^{2} \frac{A}{2})\\\\=> c^{2}+ b^{2}-2bc(\frac{b^{2}+c^{2}-a^{2}}{2bc})

since, cos^{2}∅ - sin^{2}∅ == cos2∅

here ∅=A/2

∴ cos2∅ = cos A

so we get,

=> c^{2} +b^{2} -b^{2} -c^{2} +a^{2} \\=> a^{2}

hope it helps!!

it took some time to answer it in the proper format

mark me brainliest if u find the answer helpful (no obligations tho)

Similar questions