Math, asked by nagmasaifi9676, 9 months ago

b+c-a/(a-b)(a-c)+c+a-b/(b-c)(b-a)+a+b-c/(c-a)(c-b)

Answers

Answered by Anonymous
13

Answer:

Step by step solution :

Step 1 :

Equation at the end of step 1 :

(b+c-a) (-b+c+a) (b-c+a)

(—————————————+—————————————)+———————————

((a-b)•(a-c)) ((b-c)•(b-a)) (c-a)•(c-b)

Step 2 :

b - c + a

Simplify —————————————————

(c - a) • (c - b)

Equation at the end of step 2 :

(b+c-a) (-b+c+a) (b-c+a)

(—————————————+—————————————)+———————————

((a-b)•(a-c)) ((b-c)•(b-a)) (c-a)•(c-b)

Step 3 :

Equation at the end of step 3 :

(b+c-a) (-b+c+a) (b-c+a)

(—————————————+———————————)+———————————

((a-b)•(a-c)) (b-c)•(b-a) (c-a)•(c-b)

Step 4 :

-b + c + a

Simplify —————————————————

(b - c) • (b - a)

Equation at the end of step 4 :

(b+c-a) (-b+c+a) (b-c+a)

(—————————————+———————————)+———————————

((a-b)•(a-c)) (b-c)•(b-a) (c-a)•(c-b)

Step 5 :

Equation at the end of step 5 :

(b+c-a) (-b+c+a) (b-c+a)

(———————————+———————————)+———————————

(a-b)•(a-c) (b-c)•(b-a) (c-a)•(c-b)

Step 6 :

b + c - a

Simplify —————————————————

(a - b) • (a - c)

Equation at the end of step 6 :

(b+c-a) (-b+c+a) (b-c+a)

(———————————+———————————)+———————————

(a-b)•(a-c) (b-c)•(b-a) (c-a)•(c-b)

Step 7 :

Calculating the Least Common Multiple :

7.1 Find the Least Common Multiple

The left denominator is : (a-b) • (a-c)

The right denominator is : (b-c) • (b-a)

Number of times each Algebraic Factor

appears in the factorization of:

Algebraic

Factor Left

Denominator Right

Denominator L.C.M = Max

{Left,Right}

a-b 1 1 1

a-c 1 0 1

b-c 0 1 1

Least Common Multiple:

(a-b) • (a-c) • (b-c)

Calculating Multipliers :

7.2 Calculate multipliers for the two fractions

Denote the Least Common Multiple by L.C.M

Denote the Left Multiplier by Left_M

Denote the Right Multiplier by Right_M

Denote the Left Deniminator by L_Deno

Denote the Right Multiplier by R_Deno

Left_M = L.C.M / L_Deno = b-c

Right_M = L.C.M / R_Deno = -1•(a-c)

Making Equivalent Fractions :

7.3 Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

L. Mult. • L. Num. (b+c-a) • (b-c)

—————————————————— = —————————————————————

L.C.M (a-b) • (a-c) • (b-c)

R. Mult. • R. Num. (-b+c+a) • -1 • (a-c)

—————————————————— = —————————————————————

L.C.M (a-b) • (a-c) • (b-c)

Adding fractions that have a common denominator :

7.4 Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

(b+c-a) • (b-c) + (-b+c+a) • -1 • (a-c) b2 - bc + ca - a2

——————————————————————————————————————— = ———————————————————————————

(a-b) • (a-c) • (b-c) (a - b) • (a - c) • (b - c)

Equation at the end of step 7 :

(b2-bc+ca-a2) (b-c+a)

—————————————————+———————————

(a-b)•(a-c)•(b-c) (c-a)•(c-b)

Step 8 :

Calculating the Least Common Multiple :

8.1 Find the Least Common Multiple

The left denominator is : (a-b) • (a-c) • (b-c)

The right denominator is : (c-a) • (c-b)

Number of times each Algebraic Factor

appears in the factorization of:

Algebraic

Factor Left

Denominator Right

Denominator L.C.M = Max

{Left,Right}

a-b 1 0 1

a-c 1 1 1

b-c 1 1 1

Least Common Multiple:

(a-b) • (a-c) • (b-c)

Calculating Multipliers :

8.2 Calculate multipliers for the two fractions

Denote the Least Common Multiple by L.C.M

Denote the Left Multiplier by Left_M

Denote the Right Multiplier by Right_M

Denote the Left Deniminator by L_Deno

Denote the Right Multiplier by R_Deno

Left_M = L.C.M / L_Deno = 1

Right_M = L.C.M / R_Deno = (a-b)•-1•-1

Making Equivalent Fractions :

8.3 Rewrite the two fractions into equivalent fractions

L. Mult. • L. Num. (b2-bc+ca-a2)

—————————————————— = —————————————————————

L.C.M (a-b) • (a-c) • (b-c)

R. Mult. • R. Num. (b-c+a) • (a-b) • -1 • -1

—————————————————— = —————————————————————————

L.C.M (a-b) • (a-c) • (b-c)

Adding fractions that have a common denominator :

8.4 Adding up the two equivalent fractions

(b2-bc+ca-a2) + (b-c+a) • (a-b) • -1 • -1 0

————————————————————————————————————————— = ———————————————————————————

(a-b) • (a-c) • (b-c) (a - b) • (a - c) • (b - c)

Final result :

0

Answered by kridhiya1997
2

Answer: 0

Step-by-step explanation:

Similar questions