English, asked by UllashGhosh, 1 year ago

b+c/(a-b) (a-c) +c+a/(b-a) (b-c) +a+b/(c-a) (c-b) It solved this answer


UllashGhosh: please find

Answers

Answered by Deepsbhargav
32
☆Hey friend!!!!☆

===================
Here is your answer ☞
===================

 \frac{(b + c)}{(a - b)(a - c)} + \frac{(c + a)}{(b - a)(b - c)} + \frac{a + b}{(c - a)(c - b)} \\ \\ = \frac{(b + c)}{(a - b)(a - c)} - \frac{(a + c)}{(a - b)(b - c)} + \frac{(a + b)}{(a - c)(b - c)} \\ \\ = \frac{(b + c)(b - c) - (a + c)(a - c) + (a + b)(a - b)}{(a - b)(b - c)(a - c)} \\ \\ = \frac{( {b}^{2} - {c}^{2} ) - ( {a}^{2} - {c}^{2}) + ( {a}^{2} - {b}^{2} ) }{(a - b)(b - c)(a - c)} \\ \\ = \frac{ {b}^{2} - {c}^{2} - {a}^{2} + {c}^{2} + {a}^{2} - {b}^{2} }{(a - b)(b - c)(a - c)} \\ \\ = \frac{0}{(a - b)(b - c)(a - b)} \\ \\ \\ = Infinity \: \: \: \: .......answer \\ \\ we \: know \: that \: = > \frac{0}{something} \: is \: always \: eqaule \: to \: "Infinity "

========================
Hope it will help you ☺☺☺☺
========================

Devil_king ▄︻̷̿┻̿═━一

Deepsbhargav: handsome... xD
Deepsbhargav: and u
Deepsbhargav: oohoooo
Deepsbhargav: really
Deepsbhargav: r u there
Answered by CreAzieStsoUl
1

Explanation:

ʏᴏᴜ ᴄᴀɴ sᴇᴇ ᴛʜᴇʀᴇ ɪᴛ's ᴀᴠᴀɪʟᴀʙʟᴇ.........

Similar questions