(b+c-a)x=(c+a-b)y=(a+b-c)z=(a+b+c)t then prove that 1/x+1/y+1/z=1/t
Answers
Step-by-step explanation:
Similarly,
Therefore,
Question
➨ We have to prove (1)/(x) + (1)/(y) + (1)/(z) = (1)/(t) and the given values are (b+c-a)x = (c+a-b)y = (a+b-c)z = (a+b+c)t
{\bold{\sf{\underline{Given \: that}}}}
Giventhat
➨ {\bold{\bf{(b+c-a)x = (c+a-b)y = (a+b-c)z = (a+b+c)t}}}(b+c−a)x=(c+a−b)y=(a+b−c)z=(a+b+c)t
{\bold{\sf{\underline{To \: prove}}}}
Toprove
➨ {\bold{\bf{(1)/(x) + (1)/(y) + (1)/(z) = (1)/(t)}}}(1)/(x)+(1)/(y)+(1)/(z)=(1)/(t)
{\bold{\sf{\underline{Let's \: prove}}}}
Let
′
sprove
⚡
➨ {\bold{\bf{(b+c-a)x = (c+a-b)y = (a+b-c)z = (a+b+c)t}}}(b+c−a)x=(c+a−b)y=(a+b−c)z=(a+b+c)t
According to the question now,
➨ {\bold{\bf{(b+c-a)x = (a+b+c)t}}}(b+c−a)x=(a+b+c)t
➨ {\bold{\bf{[(b+c-a)]/[a+b+c)t]}}}[(b+c−a)]/[a+b+c)t]
➨ {\bold{\bf{(1)/(x)}}}(1)/(x) Equation 1
Now,
➨ {\bold{\bf{(c+a-b)]/[a+b+c)t]}}}(c+a−b)]/[a+b+c)t]
➨ {\bold{\bf{(c+a-b)]/[(a+b+c)t]}}}(c+a−b)]/[(a+b+c)t]
➨ {\bold{\bf{(1)/(y)}}}(1)/(y) Equation 2
Now,
➨ {\bold{\bf{(a+b-c)z=(a+b+c)t}}}(a+b−c)z=(a+b+c)t
➨ {\bold{\bf{[(a+b+c)]/[(a+b+c)t]}}}[(a+b+c)]/[(a+b+c)t]
➨ {\bold{\bf{(1)/(z)}}}(1)/(z) Equation 3
Done but now we have to add Equation 1 , 2 and 3. Let's add !
➨ {\bold{\bf{(1)/(x) + (1)/(y) + (1)/(z)}}}(1)/(x)+(1)/(y)+(1)/(z)
➨ {\bold{\bf{[(b+c-a)] / [(a+b+c)t] + [(c+a-b)] / [(a+b+c)t] + [(a+-c)] / [(a+b+c)t]}}}[(b+c−a)]/[(a+b+c)t]+[(c+a−b)]/[(a+b+c)t]+[(a+−c)]/[(a+b+c)t]
➨ {\bold{\bf{[(b+c-a)] + [(c+a-b)] + [(a+b-c)] / [(a+b+c)t]}}}[(b+c−a)]+[(c+a−b)]+[(a+b−c)]/[(a+b+c)t]
Now, let's see what to do ( as we already see that the denominators be same ) so now let's add them !
➨ {\bold{\bf{b+c-a+c+a-b+a+b-c) / [(a+b+c)t]}}}b+c−a+c+a−b+a+b−c)/[(a+b+c)t]
Let's cancel the digits.
➨ {\bold{\bf{[(a+b+c) \times 1] / [a+b+c] \times t}}}[(a+b+c)×1]/[a+b+c]×t
➨ {\bold{\bf{1 \times t}}}1×t
Henceforth, it's proved.