(b-c) x square +(c-a) x +(a+b) =0 has equal roots. Show that 2b=a+c
Answers
Answered by
3
Answer:
Step-by-step explanation:
b-c)x²+(c-a)x+(a-b)=0
Comparing with quadratic equation
Ax²+Bx+C=0
A=(b-c),B=c-a,C=a-b
Discriminate when roots are equal
D=B²-4AC=0
D=(c-a)²−4(b-c)(a-b)=0
D=(c²+a²−2ac)-4(ba-ac-b²+bc)=0
D=c²+a²−2ac-4ab+4ac+4b²-4bc=0
c²+a²+2ac-4b(a+c)+4b²=0
(a+c)²-4b(a+c)+4b²=0
[(a+c)-2b]²=0
a+c=2b
Answered by
2
Answer:
Step-by-step explanation:
( b - c ) x² + ( c - a ) x + ( a + b ) = 0 has equal roots ,
then ,
b² - 4ac = 0
( c - a )² - 4 ( b - c ) ( a + b ) = 0
( c - a )² - 4ba + 4b² + 4ac + 4bc = 0
( c - a )² + 4ac - 4b ( a + c ) + 4b² = 0
( a + c )² - 2. 2b. ( a + c ) + ( 2b )² = 0
( a + c - 2b )² = 0
a + c - 2b = 0
a + c = 2b
2b = a + c [ Proved ]
Similar questions