Math, asked by 83rahulrashi, 1 year ago


(b) Find a quadratic polynomial whose zeros are 4 and 3 and verify the relationship between
the zeros and the coefficients.
(CBSE 2008)


avinashkr232000: x2-7x+12
83rahulrashi: process
avinashkr232000: let zeroes are pand q so.........p+q=7andpq=12
83rahulrashi: and then polynomial formation by the help of quadratic formula!!!
avinashkr232000: (x-3)(x-4) solve it and you find polynomial
83rahulrashi: oh ok thanks man
avinashkr232000: x2-(p+q)x+pq where p and q are zeroes
83rahulrashi: ok
avinashkr232000: samajh aa gaya ya phir see batau
83rahulrashi: no samajh gaye thanks

Answers

Answered by abdul9838
2

 <b> <body \: bgcolor = "skyblue">

 \bf \red{hey \: user \: here \: is \: ans} \\  \\  \bf \pink{ \huge \: solution} \\  \\  \bf \blue{given \: that} \\  \\  \bf \pink{4 \: and \: 3} \\  \\ \bf \red{let \: be} \\  \\  \bf \pink{ \alpha  = 4} \\  \\  \bf \pink{and} \\  \\ \bf \pink{ \beta  = 3} \\  \\ \bf \pink{ \huge \: now} \\  \\  \bf \green{ \underline{using \: to \: this \: formula}} \\  \\ \bf \pink{(x -  \alpha )(x -  \beta )} \\  \\ \bf \pink{(x - 4)(x - 3)} \\  \\ \bf \pink{ {x}^{2} - 3x - 4x + 12 } \\  \\ \bf \pink{ {x}^{2} - 7x + 12 = 0 } \\  \\ \bf \blue{ \underline{relationship \: between \: zeros}} \\  \\ \bf \red{ as \: we \: know \: that} \\  \\ \bf \pink{sum \: of \: zeros =  -  \frac{b(where \: b \: cofficient \: of \: x)}{ \: a(where \: a \: cofficient \: of \: ( {x}^{2} )}} \\  \\ \bf \pink{ \alpha  +  \beta  =  -  \frac{b}{a} } \\  \\ \bf \pink{4 + 3 =  -  \frac{( - 7)}{1} } \\  \\ \bf \pink{7 = 7} \\  \\ \bf \blue{and} \\  \\ \bf \pink{product \: of \: zeros =  \frac{c(where \: c \: constant \: term)}{a(where \: a \: cofficient \: of \:  {x}^{2} )} } \\  \\ \bf \pink{ \alpha  \times  \beta  =  \frac{c}{a} } \\  \\ \bf \pink{4 \times 3 =  \frac{12}{1} } \\  \\ \bf \pink{12 = 12 \:  \:  \: ans}

  <marquee \: behavior = "alternate"> <marquee \: bgcolor = "orange">

 \bf \green{ \huge \: thanks} \\  \\  \bf \purple{abdul \: is \: here} \\  \\  \bf \red{ \huge \: follow \: me}

Similar questions