b) Find the derivative of
cos
sin x
w.r.t. 'X' using the rules of differentiation.
Answers
Answer:
5x⁴ Sinx - x⁵ Cosx + 1 / Sin²x
Step-by-step explanation:
Given---> y = ( x⁵ - Cosx ) / Sinx
To find---> Derivative of given function
Solution---> ATQ,
y = ( x⁵ - Cosx ) / Sinx
Differentiating with respect to x,
=> dy/dx = d/dx { ( x⁵ - Cosx ) / Sinx }
We have division rule of differentiation as follows
d/dx( u / v ) = ( v du/dx - u dv/dx ) / v²
applying this formula here , we get
= Sinxd/dx(x⁵- Cosx) - (x⁵-Cosx )d/dx(Sinx) / Sin²x
We have some formulee of differentiation as follows,
1) d/dx ( xⁿ ) = nxⁿ⁻¹
2) d/dx ( Sinx ) = Cosx
3) d/dx ( Cosx ) = - Sinx
Applying these formulee here , we get,
= Sinx ( 5x⁴ + Sinx ) - (x⁵ - Cosx ) Cosx / Sin²x
= ( 5x⁴Sinx + Sin²x - x⁵Cosx + Cos²x ) / Sin²x
= ( 5x⁴Sinx - x⁵Cosx + Sin²x + Cos²x ) / Sin²x
We have an identity of trigonometery ,
Sin²θ + Cos²θ = 1 , applying it here we get,
dy / dx = ( 5x⁴Sinx - x⁵ Cosx + 1 ) / Sin²x