Math, asked by kolliramunaidu2004, 5 hours ago

b) Find the equation of the rectangula hyperbola whose focus the point (-1, -3) and directrix is the line 2x+y+1=0​

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

Given,

\sf{Focus\,\,\,of\,\,\,the\,\,\,parabola\,,\,\,S\equiv(-1,-3)}

\sf{Directrix\,\,\,of\,\,\,the\,\,\,parabola\,,\,\,D:\,2x+y+1=0}

Let M be the foot of perpendicular on directrix, and P be any point on the parabola

So, for a parabola,

\tt{SP=PM}

\tt{\implies\,\sqrt{(h+1)^2+(k+3)^2}=\dfrac{2h+k+1}{\sqrt{4+1}}}

\tt{\implies\,(h+1)^2+(k+3)^2=\dfrac{(2h+k+1)^2}{5}}

\tt{\implies\,h^2+2h+1+k^2+6k+9=\dfrac{4h^2+k^2+1+4hk+2k+4h}{5}}

\tt{\implies\,h^2+k^2+2h+6k+10=\dfrac{4h^2+k^2+4hk+4h+2k+1}{5}}

\tt{\implies\,5h^2+5k^2+10h+30k+50=4h^2+k^2+4hk+4h+2k+1}

\tt{\implies\,5h^2-4h^2+5k^2-k^2-4hk+10h-4h+30k-2k+50-1=0}

\tt{\implies\,h^2+4k^2-4hk+6h+28k+49=0}

The required equation of the parabola is

\boxed{\tt{x^2+4y^2-4xy+6x+28y+49=0}}

Similar questions