b. Find the mean and the median of
i). 5,9,10,11 and 15
Answers
Answer:
=23.8+4.4=28.2=4.1
Step-by-step explanation:
(i) 1, 3, 4, 5, 9, 9, 11 (already in increasing order)
So mean average of number = \frac{(1+3+4+5+9+11)}{7}=\frac{42}{7}=67(1+3+4+5+9+11)=742=6
Median = Total number is odd so Median will be
= \left(\frac{n+1}{2}\right)=\frac{7+1}{2}=4th\ term(2n+1)=27+1=4th term = 5
(ii) 10, 12, 12, 15, 15, 17, 18, 18, 18, 19 (already in increasing order)
Mean = \frac{(10+12+12+15+15+17+18+18+18+19)}{10}=\frac{154}{10}10(10+12+12+15+15+17+18+18+18+19)=10154 = 15.4
Median ⇒ Total Number is even so the Median will be \frac{10}{2}=5th210=5th
Average of 5th and 6th term = \frac{15+17}{2}=\frac{32}{2}215+17=232 = 16
(iii) 2, 4, 5, 8, 10, 13, 14 (already in increasing order)
Mean = \frac{2+4+5+8+10+13+14}{7}=\frac{56}{7}72+4+5+8+10+13+14=756 = 8
Median ⇒ \frac{7+1}{2}=\frac{8}{2}=4th\ term\ =\ 827+1=28=4th term = 8
(iv) 5, 8, 10, 11, 13, 16, 19, 20 (already in increasing order)
Mean = \frac{5+8+10+11+13+16+19+20}{8}=\frac{102}{8}=12.7585+8+10+11+13+16+19+20=8102=12.75
Median = \frac{8}{2}=4th\28=4th
= \frac{4th\ term\ +\ 5th\ term}{2}=\frac{11+13}{2}=\frac{24}{2}=1224th term + 5th term=211+13=224=12
(v) 1.2, 1.9, 2.2, 2.6, 2.9 (already in increasing order)
Mean = \frac{1.2+1.9+2.2+2.6+2.9}{5}=\ \frac{10.8}{5}=2.1651.2+1.9+2.2+2.6+2.9= 510.8=2.16
Total number is odd so, the median will be \frac{5+1}{2}=\frac{6}{2}=3rd\ term25+1=26=3rd term = 2.2
(vi) 0.5, 5.6, 3.8, 4.9, 2.7, 4.4. (Not in increasing order so, arrange in increasing order first)
⇒ 0.5, 2.7, 3.8, 4.4, 4.9, 5.6
Mean = \frac{0.5+2.7+3.8+4.4+4.9+5.6}{6}=\frac{21.9}{6}=3.6560.5+2.7+3.8+4.4+4.9+5.6=621.9=3.65
Median ⇒ Number is even = 6
So the median will be \frac{1}{2}\left\{\frac{6}{2}+\left(\frac{6}{2}+1\right)\right\}=\frac{3rd+4th\ }{2}21{26+(26