Math, asked by akashdeepchauhan123, 1 year ago

(b)
Given three points P(-1,2), A (2, k) and B(k-1). Given the PA = PB.
Find the value of k.​

Answers

Answered by Mankuthemonkey01
110

Answer

\sf\frac{1}{2}

Explanation

Given,

Three points P(-1, 2) A(2, k) and B(k - 1)

PA = PB

To find,

The value of k

Apply Distance formula,

\sf \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Then,

for PA, distance = \sf\sqrt{(2 - (-1))^2 + (k - 2)^2}

and, for PB, distance = \sf\sqrt{(k - (-1))^2 + (-1 - 2)^2}

Equating the two,

\sf\sqrt{(2 + 1)^2 + (k - 2)^2} = \sqrt{(k + 1)^2 + (-3)^2}

Square both sides

\sf (3)^2 + (k - 2)^2 = (k + 1)^2 + (-3)^2

→ 9 + k² + 4 - 4k = k² + 1 + 2k + 9

→ 4 - 4k = 1 + 2k

→ 4 - 1 = 4k + 2k

→ 6k = 3

→ k = ½

Answered by Anonymous
65

Answer:

\large\boxed{\sf{k=\dfrac{1}{2}}}

Step-by-step explanation:

Given three points are :-

P ( -1,2 )

A ( 2, k )

B (k, -1 )

Also, it's given that, PA = PB

By distance formula, we have,

 =  > PA =  \sqrt{ {( - 1 - 2)}^{2}  +  {(2 - k)}^{2} }  \\  \\  =  > PA =  \sqrt{ {( - 3)}^{2}  +  {(2 - k)}^{2} }   \\  \\  =  > PA =  \sqrt{9 +  {(2 - k)}^{2} }  \:  \:  \:  \:  \:  \:  \: .........(1)

Similarly, we have,

 =  > PB =  \sqrt{ {( - 1 - k)}^{2} +  {(2 + 1)}^{2}  }  \\  \\  =  > PB =  \sqrt{ {( - 1 - k)}^{2}  +  {(3)}^{2} }  \\  \\  =  > PB =  \sqrt{ {( - 1 - k)}^{2}  + 9}  \:  \:  \:  \:  \:  \:  \: ........(2)

°.° PA = PB

.°. from Equation (1) and (2) , we have

 =  >  \sqrt{ 9 +  {(2 - k)}^{2} }  =  \sqrt{ {( - 1 - k)}^{2}  + 9} \\   \\  =  > 9 +  {(2 - k)}^{2}  =  9 +  {( - 1 - k)}^{2}  \\  \\  =  >  {(2 - k)}^{2}  =  {( - 1 - k)}^{2}  \\  \\  =  > 4 +  {k}^{2}  - 4k = 1 +  {k}^{2} + 2k  \\  \\  =  > 4k + 2k = 4 - 1 \\  \\  =  > 6k = 3 \\  \\  =  > k =  \frac{3}{6}  \\  \\  =  > k =  \frac{1}{2}

Concept Map :-

  • Distance between two points ( a , b ) and ( c , d ) is given by, \sf{ \sqrt{ {(a - c)}^{2}  +  {(b - d)}^{2} } }
Similar questions