b) If a, b, c are three rational numbers where a
Verify: a + (b + c) = (a + b) + c
Answers
Answer:
hi
Step-by-step explanation:
When
• a = \sf\dfrac{2}{3}
3
2
• b = \sf\dfrac{4}{5}
5
4
• c = \sf\dfrac{-5}{6}
6
−5
1. Associative Property of Addition
\longrightarrow \sf \: a + (b + c) = (a + b) + c⟶a+(b+c)=(a+b)+c
\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{4}{5} + \dfrac{ - 5}{6} ) = ( \dfrac{2}{3} + \dfrac{4}{5} ) + \dfrac{ - 5}{6}⟶
3
2
+(
5
4
+
6
−5
)=(
3
2
+
5
4
)+
6
−5
\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{4}{5} - \dfrac{ 5}{6} ) = ( \dfrac{2}{3} + \dfrac{4}{5} ) - \dfrac{ 5}{6}⟶
3
2
+(
5
4
−
6
5
)=(
3
2
+
5
4
)−
6
5
\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{24 - 25}{30} )= (\dfrac{10 + 12}{15} )- \dfrac{ 5}{6}⟶
3
2
+(
30
24−25
)=(
15
10+12
)−
6
5
\longrightarrow \sf \: \dfrac{2}{3} - \dfrac{1}{30} = \dfrac{22}{15} - \dfrac{ 5}{6}⟶
3
2
−
30
1
=
15
22
−
6
5
\longrightarrow \sf \: \dfrac{20 -1}{30} = \dfrac{ 44 - 25}{30}⟶
30
20−1
=
30
44−25
\longrightarrow \sf \red{ \dfrac{19}{30} = \dfrac{ 19}{30} }⟶
30
19
=
30
19