Math, asked by nsharma82970, 1 month ago

b) If a, b, c are three rational numbers where a
Verify: a + (b + c) = (a + b) + c​

Answers

Answered by vsnaik
0

Answer:

hi

Step-by-step explanation:

When

• a = \sf\dfrac{2}{3}

3

2

• b = \sf\dfrac{4}{5}

5

4

• c = \sf\dfrac{-5}{6}

6

−5

1. Associative Property of Addition

\longrightarrow \sf \: a + (b + c) = (a + b) + c⟶a+(b+c)=(a+b)+c

\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{4}{5} + \dfrac{ - 5}{6} ) = ( \dfrac{2}{3} + \dfrac{4}{5} ) + \dfrac{ - 5}{6}⟶

3

2

+(

5

4

+

6

−5

)=(

3

2

+

5

4

)+

6

−5

\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{4}{5} - \dfrac{ 5}{6} ) = ( \dfrac{2}{3} + \dfrac{4}{5} ) - \dfrac{ 5}{6}⟶

3

2

+(

5

4

6

5

)=(

3

2

+

5

4

)−

6

5

\longrightarrow \sf \: \dfrac{2}{3} + ( \dfrac{24 - 25}{30} )= (\dfrac{10 + 12}{15} )- \dfrac{ 5}{6}⟶

3

2

+(

30

24−25

)=(

15

10+12

)−

6

5

\longrightarrow \sf \: \dfrac{2}{3} - \dfrac{1}{30} = \dfrac{22}{15} - \dfrac{ 5}{6}⟶

3

2

30

1

=

15

22

6

5

\longrightarrow \sf \: \dfrac{20 -1}{30} = \dfrac{ 44 - 25}{30}⟶

30

20−1

=

30

44−25

\longrightarrow \sf \red{ \dfrac{19}{30} = \dfrac{ 19}{30} }⟶

30

19

=

30

19

Similar questions