Math, asked by ramadevimajeti999, 6 months ago

(b) If L= (3y + 1/7) , M = (3y - 1/8 ) ,N = (3y -1/7)

(i) Find the sum of L , M and N

(ii) Find the product of L and M​

Answers

Answered by MяMαgıcıαη
43

\large\sf{\boxed{\underline{Answer :-}}}

Given :-

L = 3y + \dfrac{1}{7}

M = 3y - \dfrac{1}{8}

N = 3y - \dfrac{1}{7}

To Find :-

1. L + M + N

2. L × M

_____________________________________________

1. L + M + N

\implies 3y + \dfrac{1}{7} + 3y - \dfrac{1}{8} + 3y - \dfrac{1}{7}

\implies 3y + 3y + 3y + \dfrac{1}{7} - \dfrac{1}{7} - \dfrac{1}{8}

\implies 9y + \cancel{\dfrac{1}{7}} - \cancel{\dfrac{1}{7}} - \dfrac{1}{8}

\implies 9y - \dfrac{1}{8}

\therefore L + M + N = 9y - \dfrac{1}{8}

2. L × M

\implies ( 3y + \dfrac{1}{7} ) × ( 3y - \dfrac{1}{8} )

\implies 3y × 3y - 3y × \dfrac{1}{8} + \dfrac{1}{7} × 3y - \dfrac{1}{7} × \dfrac{1}{8}

\implies 9y² - \dfrac{3y}{8} + \dfrac{3y}{7} - \dfrac{1}{56}

\implies 9y² - \dfrac{21}{56} + \dfrac{24}{56} - \dfrac{1}{56}

\implies 9y² + \dfrac{3y}{56} - \dfrac{1}{56}

\therefore L× M = 9y² + \dfrac{3y}{56} - \dfrac{1}{56}

______________________________________________

Answer completed :)

Answered by TheRose06
5

To Find :-

1. L + M + N

2. L × M

___________________________

1. L + M + N

=> 3y+1/7 + 3y-1/8 + 3y-1/7

=> 3y+ 3y + 3y + 1/7- 1/7- 1/8

=> 9y - 1/8 Ans.

2. L × M

=> (3y + 1/7) + (3y-1/8)

=> 3y × 3y - 3y × 1/8 + 1/7 × 3y - 1/7 × 1/8

=> 9y² - 3y/8 + 3y/7 - 1/56

=> 9y²- 21/56 + 24/56 - 1/56

=> 9y² + 3y/56 - 1/56 Ans.

Similar questions