(b) If sec A+ tan A = p, show that: sin A
p^2-1
p²+1
Answers
Step-by-step explanation:
please mark the brainliest
Step-by-step explanation:
Given:-
Sec A + Tan A = p
To find:-
Show that Sin A = (p^2-1)/(p^2+1)
Solution:-
Given that :-
Sec A + Tan A = P --------(1)
We know that
Sec^2 A - Tan^2 A = 1
=>(Sec A + Tan A )(Sec A - Tan A )=1
=>P(Sec A - Tan A) = 1
Sec A - Tan A = 1/P -------(2)
Now , On adding (1)&(2)
Sec A + Tan A = P
Sec A - Tan A = 1/P
(+)
________________
2 Sec A + 0 = P+(1/P)
_________________
2 Sec A = P+(1/P) -------------(3)
On Subtracting (2) from (1)
Sec A + Tan A = P
Sec A - Tan A = 1/P
(-)
________________
0+2 Tan A = P-(1/P)
________________
2 Tan A = P-(1/P) -----------(4)
On dividing (4) by (3)
2 Tan A/2 Sec A = [P-(1/P)]/[P+(1/P)]
=>Tan A/ Sec A= [(P^2-1)/P]/[(P^2+1)/P]
=>Tan A / Sec A = (P^2-1)/(P^2+1)
=>(Sin A/Cos A)/(1/ Cos A) = (P^2-1)/(P^2+1)
=> Sin A = (P^2-1)/(P^2+1)
Hence, Proved
Answer:-
Sin A = (P^2-1)/(P^2+1) for the given problem
Used formulae:-
- Tan A = Sin A/ Cos A
- Sec A = 1/ Cos A
- Sec^2 A - Tan^2 A = 1