Math, asked by renusribagyalaxmi, 1 month ago

b
If x = 7+4√3 then find the value of x
X​

Attachments:

Answers

Answered by naveen200605
2

7 + 4 \sqrt{3}  +  \frac{1}{7 + 4 \sqrt{3} }  \\ 7 + 4 \sqrt{3 }  +  \frac{1(7 - 4  \sqrt{3} )}{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3})  } </p><p></p><p>

7 + 4 \sqrt{3}  + \frac{7 - 4 \sqrt{3} }{ {7}^{2} - (4 \sqrt{3}) {}^{2}   }   \\ 7 + 4 \sqrt{3}  +  \frac{7 - 4 \sqrt{3} }{49 - 48}  \\  =  7 + 4 \sqrt{3}  + 7 - 4 \sqrt{3}

cancel \:  + 4 \sqrt{3 \:}  \: and \:  - 4 \sqrt{3} \\ 7 + 7 = 14

x +  \frac{1}{x}  = 14

Answered by MrImpeccable
18

ANSWER:

Given:

  • x = 7 + 4√3

To Find:

  • Value of x + 1/x

Solution:

We are given that,

\implies\sf x=7+4\sqrt3

So,

\implies\sf\dfrac{1}{x}=\dfrac{1}{7+4\sqrt3}

On rationalising,

\implies\sf\dfrac{1}{x}=\dfrac{1}{7+4\sqrt3}\times \dfrac{7-4\sqrt3}{7-4\sqrt3}

\implies\sf\dfrac{1}{x}=\dfrac{7-4\sqrt3}{(7+4\sqrt3)(7-4\sqrt3)}

We know that,

\hookrightarrow (a-b)(a+b)=a^2-b^2

\implies\sf\dfrac{1}{x}=\dfrac{7-4\sqrt3}{(7)^2-(4\sqrt3)^2}

\implies\sf\dfrac{1}{x}=\dfrac{7-4\sqrt3}{49-48}

\implies\sf\dfrac{1}{x}=\dfrac{7-4\sqrt3}{1}

\implies\sf\dfrac{1}{x}=7-4\sqrt3

We need to find the value of,

\implies x+\dfrac{1}{x}

So,

\implies x+\dfrac{1}{x}=(7+4\sqrt3)+(7-4\sqrt3)

\implies x+\dfrac{1}{x}=7+4\sqrt3+7-4\sqrt3

Cancelling 4√3,

\implies x+\dfrac{1}{x}=14

Hence,

\implies\bf x+\dfrac{1}{x}=14

Similar questions