Math, asked by jamshedaalam365, 1 year ago

(b) If x2 + 2xy + y3 = 42, find dy/dx​

Answers

Answered by kaushik05
47

    \huge\boxed{ \green{\mathfrak{solution}}}

Given:

 \bold{ {x}^{2}  + 2xy +  {y}^{3}  = 42}

Differentiate w.r.t x both sides,

 \frac{d}{dx} ( {x}^{2}  + 2xy +  {y}^{3} ) =  \frac{d}{dx} 42 \\  \\  \rightarrow \:  \frac{d}{dx}  {x}^{2}  +  \frac{d}{dx} 2xy +  \frac{d}{dx}  {y}^{3}  = 0 \\  \\  \rightarrow \: 2x + 2(x \: \frac{dy}{dx}  + y) + 3 {y}^{2}   \frac{dy}{dx}  = 0 \\  \\  \rightarrow \: 2x + 2y +  \frac{dy}{dx} (2x + 3 {y}^{2} ) = 0 \\  \\  \rightarrow \:  \frac{dy}{dx} (2x + 3 {y}^{2} ) =  - 2(x + y) \\  \\   \rightarrow \:  \frac{dy}{dx}  =  \frac{ - 2(x + y)}{2x + 3 {y}^{2} }

Formula :

d /dx(x^n)= nx^(n-1)

d/dx(u.v) = u dv/dx+ v du/dx

Similar questions