B. Is it possible to have a triangle with the sides 6 cm , 3 cm, 2cm ?
C. PQR is a triangle, right angled at P. If PQ = 7 cm , PR = 24 cm , find QR.
D. Diagonals of a rhombus measure 6 cm and 8 cm. Find its perimeter.
Answers
Answer:
C) Given: PQ=10cm, PR=24cm
C) Given: PQ=10cm, PR=24cmLet QR be x cm.
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse)
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base)
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular)
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR)
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ)
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR)
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10)
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24)
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2 ⇒x
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2 ⇒x 2
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2 ⇒x 2 =100+576=676
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2 ⇒x 2 =100+576=676⇒x=
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2 ⇒x 2 =100+576=676⇒x= 676
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2 ⇒x 2 =100+576=676⇒x= 676
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2 ⇒x 2 =100+576=676⇒x= 676 =26cm
C) Given: PQ=10cm, PR=24cmLet QR be x cm.In right angled triangle QPR,(Hypotenuse) 2 =(Base) 2 +(Perpendicular) 2 [By Pythagoras theorem]⇒(QR) 2 =(PQ) 2 +(PR) 2 ⇒x 2 =(10) 2 +(24) 2 ⇒x 2 =100+576=676⇒x= 676 =26cmThus, the length of QR is 26cm.
Question :
Is it possible to have a triangle with the sides 6 cm , 3 cm, 2cm ?
Answer:
We know that to construct any triangle the sum of two sides should be greater than third .
Here, Sum of two sides is not greater than third one. So we cannot construct the triangle.
Question :
PQR is a triangle, right angled at P. If PQ = 7 cm , PR = 24 cm , find QR.
Answer:
Given :
PQ = 7cm
PR = 24 cm
QR = ?
According to Pythagoras theorem :
Hence, QR =25
Question :
Diagonals of a rhombus measure 6 cm and 8 cm. Find its perimeter.
Answer:
Given :
Diagonal 1 =d1 =8 cm = 8/2 =4
Diagonal 2 = d2 = 6 cm =6/2=3
• By Pythagoras theorem
So, one side = 5 cm
• Perimeter Of Rhombus = 4 × side
= 4 × 5
= 20 cm