Chemistry, asked by narendranetam81413, 17 days ago

(b) निम्नलिखित फलनों का अवकलन कीजिए : (i) 3x +15x2 +8x+15 /3x​

Answers

Answered by pulakmath007
1

SOLUTION

TO DETERMINE

The derivative of

\displaystyle\sf{  \frac{3 {x}^{3} + 15 {x}^{2} + 8x + 15  }{3x} }

EVALUATION

Let the given expression = y

Thus we get

\displaystyle\sf{ y =  \frac{3 {x}^{3} + 15 {x}^{2} + 8x + 15  }{3x} }

\displaystyle\sf{  \implies \: y =  \frac{3 {x}^{3}   }{3x} +\frac{ 15 {x}^{2}   }{3x} + \frac{ 8x  }{3x} +  \frac{15}{3x}   }

\displaystyle\sf{  \implies \: y =   {x}^{2} + 5x +  \frac{8}{3} +  \frac{5}{x}   }

Differentiating both sides with respect to x we get

\displaystyle\sf{ \implies   \frac{dy}{dx}  =  \frac{d}{dx} \bigg(  {x}^{2} + 5x +  \frac{8}{3} +  \frac{5}{x} \bigg)   }

\displaystyle\sf{ \implies   \frac{dy}{dx}  =  \frac{d}{dx} \bigg(  {x}^{2} \bigg)  +   \frac{d}{dx} \bigg(  5x  \bigg)  +   \frac{d}{dx} \bigg(  \frac{8}{3} \bigg)  +  \frac{d}{dx} \bigg(  \frac{5}{x} \bigg)  }

\displaystyle\sf{ \implies   \frac{dy}{dx}  = 2x+  5 +  0   -   \frac{5}{ {x}^{2} } }

\displaystyle\sf{ \implies   \frac{dy}{dx}  = 2x+  5   -   \frac{5}{ {x}^{2} } }

FINAL ANSWER

 \boxed{ \:  \:  \: \displaystyle\sf{   \frac{dy}{dx}  = 2x+  5   -   \frac{5}{ {x}^{2} } } \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2]

https://brainly.in/question/18312318

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

3. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions