b) OABC is a parallelogram. P and Q divide OC and BC in the ratio
CP : PO CQ: QB = 1 : 3. If OÁ = à and OČ= =, find the vector PQ and show
that PQ // OB.
Answers
Step-by-step explanation:
Let the position vector of A and C be
a
and
c
respectively. Therefore,
Position vector of B=
b
=
a
+
c
...........................................................(i)
Also Position vector of E=
3
b
+2
c
=
3
a
+3
c
............................................................(ii)
Now point P lies on angle bisector of ∠AOC. Thus,
Position vector of point P=λ(
∣
a
∣
a
+
∣
b
∣
b
)............................................................................(iii)
Also let P divides EA in ration μ:1. Therefore,
Position vector of P
=
μ+1
μ
a
+
3
a
+3
c
=
3(μ+1)
(3μ+1)
a
+3
c
................................................................................(iv)
Comparing (iii) and (iv), we get
λ(
∣
a
∣
a
+
∣
c
∣
c
)=
3(μ+1)
(3μ+1)
a
+3
c
⇒
∣
a
∣
λ
=
3(μ+1)
3μ+1
and
∣
c
∣
λ
=
μ+1
1
⇒
3∣
a
∣
3∣
c
∣−∣
a
∣
=μ
⇒
∣
c
∣
λ
=
3∣
a
∣
3∣
c
∣−
a
+1
1
⇒λ=
3∣
c
∣+2∣
a
∣
3∣
a
∣∣
c
∣
Hence, position vector of P is
3∣
c
∣+2∣
c
∣
3∣
a
∣∣
c
∣
(
∣
a
∣
a
+
∣
c
∣
c
)
Let F divides AB in ratio t:1, then position vector of F is
t+1
t
b
+
a
solution