B.
On what date will * 1,950 lent on 5th Januar
2011 amount to 2,125-50 at 5 per cent
annum simple interest ?
Answers
Step-by-step explanation:
Date = 5th Jan, 2011
P = 1950
A = 2125.50
R = 5
I = A-p = 175.5
I=\frac{P T R}{100}I=
100
PTR
175.5=1950 \times T \times \frac{5}{100}175.5=1950×T×
100
5
T=\frac{351}{195}T=
195
351
T=\frac{351}{195} \times 365T=
195
351
×365
T=73 \times 9=657 DaysT=73×9=657Days
657 Days = 1 year 292
5th Jan, 2011 to 1 year = 5th jan, 2012
292- near to one year. Less than 73 days. Calculate from December.
Dec = 31, Nov = 30, Oct = 12 Days which means 19th Oct , 2012 we will get interest.
P_{1}=2000P
1
=2000
T_{1}=3\ yearsT
1
=3 years
R_{1}=rR
1
=r
I_{1}=\frac{P_{1} T_{1} R_{1}}{100}I
1
=
100
P
1
T
1
R
1
=\frac{(2000 \times 3 \times r)}{100}=
100
(2000×3×r)
P_{2}=2400P
2
=2400
T_{2}=3\ yearsT
2
=3 years
R_{2}=rR
2
=r
I_{2}=\frac{P_{2} T_{2} R_{2}}{100}I
2
=
100
P
2
T
2
R
2
=2400 \times 3 \times \frac{r}{100}=2400×3×
100
r
And as given I_{2}=I_{1}+60I
2
=I
1
+60
\frac{I_{1}}{I_{2}}=\frac{2000 \times 3 \times r}{2400 \times 3 \times r}
I
2
I
1
=
2400×3×r
2000×3×r
\frac{I_{1}}{I_{1}+60}=\frac{5}{6}
I
1
+60
I
1
=
6
5
6 I_{1}=5\left(I_{1}+60\right)6I
1
=5(I
1
+60)
I_{1}=300I
1
=300
Substitute I_{1}I
1
in the above
300=\frac{2000 \times 3 \times R}{100} \Rightarrow R=5300=
100
2000×3×R
⇒R=5
Rate percent is 5 per annum.