Math, asked by Haaroon07, 11 months ago

(b) Prove that :
sinA - cosA + 1 / sinA + cosA - 1 = 1 / secA - tanA

Answers

Answered by sanaya768
1

Answer:

Hello mate!

Here is your answer..

Kindly check the above picture for your answer..

Hope it helps you........

Attachments:
Answered by sandy1816
0

 \frac{sinA - cosA + 1}{sinA + cosA - 1}  \\  \\  =  \frac{ \frac{sinA - cosA + 1}{cosA} }{ \frac{sinA + cosA - 1}{cosA} }  \\  \\  =  \frac{tanA + secA - 1}{tanaA- secA + 1}  \\  \\  =  \frac{tanA + secA - 1}{( {sec}^{2} A -  {tan}^{2}A) - (secA - tanA) }  \\  \\  =  \frac{tanA + secA - 1}{(secA - tanA)(secA + tanA - 1)}  \\  \\  =  \frac{1}{secA - tanA}

Similar questions