Hindi, asked by imsonaltiwari2416, 6 days ago

बेरोजगारी कोन सा शब्द भेद है​

Answers

Answered by gkuntal733
0

Answer:

\large\underline{\sf{Solution-}}

Solution−

Given that,

Rs. 25,000 invested for 2 years at compound interest, if the rates for the successive years be 4 and 5 per cent per year.

So, we have

Principal, P = Rs 25000

Rate of interest, r = 4 % per annum compounded annually.

Time, n = 1 year

Rate of interest, R = 5 % per annum compounded annually

Time, m = 1 year

We know,

Amount received on a certain sum of money of Rs P invested at the rate of r % per annum compounded annually for n years and R % per annum compounded annually for next m years is given by

\begin{gathered}\boxed{\sf{ \:Amount = P {\bigg[1 + \dfrac{r}{100} \bigg]}^{n} {\bigg[1 + \dfrac{R}{100} \bigg]}^{m} \: }} \\ \end{gathered}

Amount=P[1+

100

r

]

n

[1+

100

R

]

m

So, on substituting the values, we get

\begin{gathered}\rm \: Amount = 25000 {\bigg[1 + \dfrac{4}{100} \bigg]}^{1} {\bigg[1 + \dfrac{5}{100} \bigg]}^{1} \\ \end{gathered}

Amount=25000[1+

100

4

]

1

[1+

100

5

]

1

\begin{gathered}\rm \: Amount = 25000 {\bigg[1 + \dfrac{1}{25} \bigg]} {\bigg[1 + \dfrac{1}{20} \bigg]} \\ \end{gathered}

Amount=25000[1+

25

1

][1+

20

1

]

\begin{gathered}\rm \: Amount = 25000 {\bigg[ \dfrac{25 + 1}{25} \bigg]} {\bigg[ \dfrac{20 + 1}{20} \bigg]} \\ \end{gathered}

Amount=25000[

25

25+1

][

20

20+1

]

\begin{gathered}\rm \: Amount = 25000 {\bigg[ \dfrac{26}{25} \bigg]} {\bigg[ \dfrac{21}{20} \bigg]} \\ \end{gathered}

Amount=25000[

25

26

][

20

21

]

\begin{gathered}\rm\implies \:Amount = Rs \: 27300 \\ \end{gathered}

⟹Amount=Rs27300

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. Amount received on a certain sum of money of Rs P invested at the rate of r % per annum compounded annually for n years is given by

\begin{gathered}\boxed{\sf{ \:Amount = P {\bigg[1 + \dfrac{r}{100} \bigg]}^{n} \: }} \\ \end{gathered}

Amount=P[1+

100

r

]

n

2. Amount received on a certain sum of money of Rs P invested at the rate of r % per annum compounded semi - annually for n years is given by

\begin{gathered}\boxed{\sf{ \:Amount = P {\bigg[1 + \dfrac{r}{200} \bigg]}^{2n} \: }} \\ \end{gathered}

Amount=P[1+

200

r

]

2n

3. Amount received on a certain sum of money of Rs P invested at the rate of r % per annum compounded quarterly for n years is given by

\begin{gathered}\boxed{\sf{ \:Amount = P {\bigg[1 + \dfrac{r}{400} \bigg]}^{4n} \: }} \\ \end{gathered}

Amount=P[1+

400

r

]

4n

4. Amount received on a certain sum of money of Rs P invested at the rate of r % per annum compounded monthly for n years is given by

\begin{gathered}\boxed{\sf{ \:Amount = P {\bigg[1 + \dfrac{r}{1200} \bigg]}^{12n} \: }} \\ \end{gathered}

Amount=P[1+

1200

r

]

12n

Answered by bijo7979
0

Explanation:

अल्प-रोजगार तब होता है जब कोई कार्य किसी कर्मचारी की पूर्ण क्षमताओं का उपयोग नहीं करता है। ... बेरोजगारी तब होती है जब कोई व्यक्ति सक्रिय रूप से नौकरी की तलाश में होता है लेकिन बिना काम पर रखे एक विस्तारित अवधि का अनुभव करता है।

Similar questions