Math, asked by Anonymous, 2 months ago

♧ Bʀᴀɪɴʟʏ Sᴛᴀʀs

♧ Mᴏᴅᴇʀᴀᴛᴇʀs

A Tower of height 5 metre and flagstaff on the top of a tower subtends equal angle at the point at ground distance 13 m from the base of Tower find the height of flagstaff .

( In m upto 2 decimal places )​

Answers

Answered by SparklingBoy
187

-------------------------------

▪ Given :-

A Tower of height 5 metre and flagstaff on the top of a tower subtends equal angle at the point at ground distance 13 m from the base of Tower.

That is :

  • Height of Tower = 5 meter

  • Distance of Point from Tower = 13 meter

-------------------------------

▪ To Find :-

  • The Height of Flagstaff.

-------------------------------

▪ Solution :-

In The Attached Figure :

  • AB = Tower

  • BD = Flagstaff

  • Angle Subtended = θ

Let

Height of Flagstaff = x meter

According to the Figure :

 \Large\bigstar\:\: \underline{\pmb{ \mathcal{In \:\:\triangle\:\:DBC}} } :  -

\pink{ \large\boxed{ \boxed{\mathtt{ \tan \theta =  \dfrac{5}{13} }}}}\:\:\:\:---(1)

Now ,

 \Large\bigstar\:\:\underline{  \pmb{\mathcal{In \:\:\triangle\:\:ABC}}} :  -

 \large \mathtt{ \tan2 \theta =  \dfrac{5 + x}{13} }\\\\

 \large \mathtt{ \dfrac{2 \tan \theta}{1 -  \tan {}^{2}  \theta} =  \frac{5 + x}{13}  } \\  \\

Putting Value of tan θ from (1) :

\large  : \longmapsto \mathtt{ \dfrac{2 \times  \dfrac{5}{13} }{1 -  \dfrac{25}{169} } =  \dfrac{5 + x}{13}  } \\  \\ \large  : \longmapsto \mathtt{ \dfrac{ \dfrac{10}{13} }{ \dfrac{169 - 25}{169} }  =  \dfrac{5 + x}{13} } \\  \\ \large  : \longmapsto \mathtt{ \dfrac{ \dfrac{10}{13} }{ \dfrac{144}{169} } =  \dfrac{5 + x}{13}  } \\  \\ \large  : \longmapsto \mathtt{\dfrac{130}{144}  =  \dfrac{5 + x}{13} } \\  \\\large  : \longmapsto \mathtt{1690 = 720 + 144x}  \\  \\ \large  : \longmapsto \mathtt{144x = 970}\\  \\ \LARGE \purple{ :\longmapsto \underline {\boxed{{\bf x = 6.73m } }}}

Hence ,

  • Height of Flagstaff = 6.73 meter

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

-------------------------------

Attachments:
Answered by BrainlyTurtle
135

See the Answer in picture attached

hope it helps

Mark it brainliest

Thank You

Attachments:
Similar questions