Math, asked by abhijithajare1234, 1 month ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user Only

Find the term independent of x in the expansion of
( \sqrt{ \frac{x}{3} }  -  \frac{ \sqrt{3} }{2x} ) {}^{12}

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given expansion is

\rm :\longmapsto\:\bigg[ \sqrt{ \dfrac{x}{3} } - \dfrac{ \sqrt{3} }{2x}\bigg]^{12}

can be rewritten as

\rm \:  =  \:  {\bigg[\dfrac{ \sqrt{x} }{ \sqrt{3} }  + \dfrac{ \sqrt{3} }{2x} \bigg]}^{12}

We know,

In Binomial expansion,

\rm :\longmapsto\: {(x + y)}^{n}

The general term is given by

\boxed{ \bf \: T_{r+1}  \:  =  \: ^nC_r \:  {x}^{n - r} \:  {y}^{r}}

So,

General Term of given expansion is

\rm :\longmapsto\:T_{r+1}  =  \: ^{12}C_r \:  {\bigg[\dfrac{ \sqrt{x} }{ \sqrt{3} } \bigg]}^{12 - r} \: {\bigg[\dfrac{ \sqrt{3} }{2x} \bigg]}^{r}

\rm \:  =  \: ^{12}C_r \: \dfrac{ {\bigg[x\bigg]}^{\dfrac{12 - r}{2} } }{{\bigg[3\bigg]}^{\dfrac{12 - r}{2} }}  \: \dfrac{ {( \sqrt{3} )}^{r} }{ {2}^{r}  {x}^{r} }

\rm \:  =  \: ^{12}C_r \: \dfrac{ {\bigg[x\bigg]}^{\dfrac{12 - r}{2}  - r} }{{\bigg[3\bigg]}^{\dfrac{12 - r}{2} }}  \: \dfrac{ {( \sqrt{3} )}^{r} }{ {2}^{r}   }

\rm \:  =  \: ^{12}C_r \: \dfrac{ {\bigg[x\bigg]}^{\dfrac{12 - r - 2r}{2}} }{{\bigg[3\bigg]}^{\dfrac{12 - r}{2} }}  \: \dfrac{ {( \sqrt{3} )}^{r} }{ {2}^{r}   }

\rm \:  =  \: ^{12}C_r \: \dfrac{ {\bigg[x\bigg]}^{\dfrac{12-3 r }{2}} }{{\bigg[3\bigg]}^{\dfrac{12 - r}{2} }}  \: \dfrac{ {( \sqrt{3} )}^{r} }{ {2}^{r}   }

So,

\rm :\longmapsto\:T_{r+1} \rm \:  =  \: ^{12}C_r \: \dfrac{ {\bigg[x\bigg]}^{\dfrac{12- 3r }{2}} }{{\bigg[3\bigg]}^{\dfrac{12 - r}{2} }}  \: \dfrac{ {( \sqrt{3} )}^{r} }{ {2}^{r}   }

For the term to be independent of x, we have to substitute

\rm :\longmapsto\:\dfrac{12-3 r}{2} = 0

\rm :\longmapsto\:12 - 3r = 0

\bf\implies \:r = 4

Hence,

\bf\implies \:T_{5}  \: term \: is \: independent \: of \: x

So, Required term is

\rm :\longmapsto\:T_{5} \rm \:  =  \: ^{12}C_{4}\: \dfrac{ 1 }{{\bigg[3\bigg]}^{\dfrac{12 - 4}{2} }}  \: \dfrac{ {( \sqrt{3} )}^{4} }{ {2}^{4}   }

\rm :\longmapsto\:T_{5} \rm \:  =  \: ^{12}C_{4}\: \dfrac{ 1 }{{\bigg[3\bigg]}^{\dfrac{8}{2} }}  \: \dfrac{ {3}^{2} }{ {2}^{4}   }

\rm :\longmapsto\:T_{5} \rm \:  =  \: \dfrac{12 \times 11 \times 10 \times 9}{4 \times 3 \times 2 \times 1} \: \times  \dfrac{ 1 }{{ {3}^{4} }}   \times \: \dfrac{ {3}^{2} }{ {2}^{4}   }

\rm :\longmapsto\:T_{5} \rm \:  =  495 \times \dfrac{1}{9}  \times \dfrac{1}{16}

\rm :\longmapsto\:T_{5} \rm \:  =  55   \times \dfrac{1}{16}

\rm :\longmapsto\:T_{5} \rm \:  =   \dfrac{55}{16}

Additional Information :-

\boxed{ \sf \: ^nC_1 = ^nC_{n - 1} = n}

\boxed{ \sf \: ^nC_0 = ^nC_{n} = 1}

\boxed{ \sf \:  \frac{^nC_r}{^nC_{r - 1}}  =  \frac{n - r + 1}{r}}

\boxed{ \sf \: ^nC_r \:  +  \: ^nC_{r - 1} \:  = \:  ^{n + 1}C_r}

Similar questions