Math, asked by kamalhajare543, 3 months ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs
༒Mᴏᴅᴇʀᴀᴛᴇʀs
༒Other best user
༒Only
Question in attachment
No spam otherwise reported.
solve it ​

Attachments:

Answers

Answered by apparor468
5

Answer:

I posted your answer on attachment

please do as verified answer

please give me some thanks

Attachments:
Answered by Anonymous
28

Answer:

Solution:-

Step-by-step explanation:

Let \sqrt{arccos(x)}  = t.

Then we have.

x = cos( {t}^{2} ).since  \: x -  > ( - 1) ^{ + }

We have,

 =  >  {t}^{2}  -  > \pi ^{ - }

Hence ,we have.

</p><p>Lim_ &gt; x( - 1) {}^{ + }  \frac{ \sqrt{\pi -  \ }  \sqrt{ arccos(x)}   }{ \sqrt{\pi - t} }

</p><p>Lim_ &gt; t -  &gt;  \sqrt{\pi {}^{ - } }  \frac{ \sqrt{\pi - t} }{ \sqrt{1 + cos(( \sqrt{\pi - y)^{2}) } } }

1 + cos(( \sqrt{\pi}  -  {y})^{2} ) = 1 + cos

(\pi - 2 \sqrt{\pi \: y}  +  {y}^{2} )

= 1 - cos(2 \sqrt{\pi \: y}  -  {y}^{2} )

 = 2sin {}^{2} ( \sqrt{\pi \: y}  -  \frac{y {}^{2} }{2} )

Hence,

lim &gt; y -  &gt; 0 {}^{ + }  \frac{y}{ \sqrt{1 + cos(( \sqrt{\pi \:  - y) {}^{2}) } } }

 =  \frac{1}{ \sqrt{2} } lim &gt; y -  &gt; 0 { }^{ + }  \frac{y}{sin( \sqrt{\pi \: y -  \frac{ {y}^{2} }{2} )} }

 =  \frac{1}{ \sqrt{2} }

lim &gt; 0 {}^{ + }  \frac{( \sqrt{\pi \: y} -   \frac{ {y}^{2} }{2} ) }{sin( \sqrt{\pi \: y -  \frac{ {y}^{2} }{2} )( \sqrt{\pi \: y -  \frac{ {y}^{2} }{2}) } } }

 =  \frac{1}{ \sqrt{2 \: \pi} }

#BrainLock.

Attachments:
Similar questions