༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs
༒Mᴏᴅᴇʀᴀᴛᴇʀs
༒Other best user or physics newton
if a = 5i - j -3k and b= i+3j-5k, then show that the vectors a+b and a-b are perpendicular
No spam please otherwise reported
correct And best Answer i will drop 1000thanks
Answers
Answer:
a+b= 6i+ 2j-8k
a-b= 4i-4j+2k
(a+b).(a-b)=(6i+ 2j-8k).(4i-4j+2k)
= 24-8-16= 24-24=0 =cos®° =cos (90)
so this is proved
Given :
a = 5î - ĵ - 3k
b = î + 3ĵ - 5k
To Show :
(a + b) and (a - b) are perpendicular
Solution:
Firstly let us find the values of (a + b) and (a - b) individually.
For (a + b)
(a + b) = (5î - ĵ - 3k) + (î + 3ĵ - 5k)
(a + b) = (5 + 1)î + (-1 + 3)ĵ + (-3 -5)k
(a + b) = 6î + 2ĵ - 8k
For (a - b)
(a - b) = (5î - ĵ - 3k) - (î + 3ĵ - 5k)
(a - b) = (5 - 1)î + (-1 -3)ĵ + (-3 + 5)k
(a - b) = 4î - 4ĵ + 2k
Now, We know:
If the scalar product of (a + b) and (a - b) comes to be zero, it means both are Perpendicular to each other.
Therefore:
Scalar product = (a + b) . (a - b)
(a + b) . (a - b) = (6î + 2ĵ - 8k) . (4î - 4ĵ + 2k)
(a + b) . (a - b) = (6 × 4) + {2 × (-4)} + {(-8) × 2}
(a + b) . (a - b) = 24 - 8 - 16
(a + b) . (a - b) = 24 - 24
(a + b) . (a - b) = 0
Here, (a + b) . (a - b) = 0 and we know if scalar product of two vectors is 0 then the two vectors are Perpendicular to each other.
Hence Proved that (a + b) and (a - b) are perpendicular.
Hope this is helpful for you ☘
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬