Math, asked by Abhijithajare, 6 hours ago


༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Question: To solve;



\dashrightarrow \ \sf \dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!}

Spammer Go Away.
‎​

Answers

Answered by Anonymous
5

Step-by-step explanation:

 \dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!}

{ \implies\dfrac{1}{n(n - 1)(n - 2)!} \ - \ \dfrac{1}{(n - 1)(n - 2)!} \ - \ \dfrac{1}{(n - 2)!}}

 {\implies  \dfrac{1}{(n - 2)!}\left[  \dfrac{1}{n(n - 1)}  -  \dfrac{1}{(n - 1)} -  \dfrac{1}{1}  \right]}

 {\implies  \dfrac{1}{(n - 2)!}\left[  \dfrac{1 - n - n(n - 1)}{n(n - 1)}  \right]}

 {\implies  \dfrac{1}{(n - 2)!}\left[  \dfrac{1 - n -  {n}^{2}   + n}{n(n - 1)}  \right]}

 {\implies  \dfrac{1}{(n - 2)!}\left[  \dfrac{1-{n}^{2}}{n(n - 1)}  \right]}

 {\implies\dfrac{1-{n}^{2}}{n(n - 1)(n - 2)!}}

 {\implies\dfrac{1-{n}^{2}}{n !}}

Therefore,

\boxed{ \dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!} = \dfrac{1-{n}^{2}}{n !}}

Note:

  • n! = n(n-1)!

and similarly we can write:

  • n! = n (n-1) (n-2)!
  • n! = n (n-1) (n-2) (n-3)!

... and so on


Aryan0123: Nice answer !
Similar questions