Math, asked by abhijithajare1234, 4 hours ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Question: To solve;



\dashrightarrow \ \sf \dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!}.


Spammer Go Away.
‎​​

Answers

Answered by Abhijithajare
3

Step-by-step explanation:

\\ \\ \\ \\ \\ \sf\underline{Laws \:  of \:  exponents \: (Integer \:  exponents)} \:  \\  \\  \\  \sf \: a\neq0  \: and  \: b\neq0  and integers x \: and  y , \\ \\\bigstar \sf a^{0}=1  and a^{-n}=\dfrac{1}{a^{n}} \\   \\  \sf \bullet a^{x} \times a^{y}=a^{x+y} \\ \\\bullet \sf {a}^{x} \div {a}^{y}={a}^{x-y} \\ \\\bullet  \sf({a}^{x})^{y} =a^{xy} \\ \\\bullet \sf (ab)^{x}=a^{x}b^{x}\\ \\ \\ \\ \\ \sf \: For \:  \: \neq0  and  \:  b \: \neq0 and \:  rationals  \: r \:  \:  and \:  \: s \\ \\ \bigstar \sf \:  a^{\frac{1}{n}}=\sqrt[n]{a} \:  \: and  \:  \: a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \\ \\\bullet  \sf \: a^{r} \times a^{s}=a^{r+s} \\ \\\bullet \sf \:  {a}^{r} \div {a}^{s}={a}^{r-s} \\ \\  \sf \: \bullet ({a}^{r})^{s} =a^{rs} \\ \\\bullet  \sf \: (ab)^{r}=a^{r}b^{r}\\ \\ \\ \\  \sf \: \underline{Laws  \: of \:  exponents \: (Real  \: exponents)} \\ \ \sf \: For  \: a\neq0  and  b\neq0  and reals x  \: and  \: y \\  \\  \sf \: \bullet a^{x} \times a^{y}=a^{x+y} \\ \\\bullet \sf \:  {a}^{x} \div {a}^{y}={a}^{x-y} \\ \\\bullet  \sf \: ({a}^{x})^{y} =a^{xy} \\ \\\bullet  \sf \: (ab)^{x}=a^{x}b^{x}

[tex][/tex]

Similar questions