Math, asked by abhijithajare1234, 1 month ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs,

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user

Solve it.
No spam​

Attachments:

Answers

Answered by tpalak105
12

Step-by-step explanation:

L.Hosp :

0 - 2 . 1 / 2 sin-¹x × 1 / 1 -

2 - 1 π/2 . 1 / 1+1 = 2/π

The correct answer is 2/π

hope \: it \: helps \: you

Answered by Itzcutemuffin
33

▬▬▬ஜ۩۞۩ஜ▬▬▬▬

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

\huge\color{cyan}\boxed{\colorbox{black}{Solution❤}}

 =   lim \: x - >  \: 1  -  \frac{( \sqrt{\pi}  -  \sqrt{ {2 \: sin}^{ - 1} }   x) \: }{ \sqrt{1 - x} }  \times\frac{( \sqrt{\pi}   + \sqrt{ {2 \: sin}^{ - 1} }  \times \: x) \:  }{( \sqrt{\pi}   +  \sqrt{ {2 \: sin}^{ - 1} }  \times \: x) \:}  \\  \\  =  > (rationalize \: the \: denominator \: ) =  >  \\  \\ =  >  lim \: x - >  \: 1 -  \frac{2( \frac{\pi}{2}  -  {sin}^{ - 1 \: x} }{ \sqrt{1 - x} } ( \sqrt{\pi}  +   \sqrt{2 {sin}^{ - 1} } x) \\  \\  =  > lim \: x -  > 1  \frac{2 \cos( - 1) x}{ \sqrt{1 - x} }  \times \frac{1}{2 \sqrt{\pi} }  \\  \\ now \: we \: will \: put \: the \\ value \: of \: x \: as \:  \cos(?)  \\  \\ we \: get \:  \\  \\ lim \:  -  >  \: 1 -  \frac{2}{ \sqrt{2 \sin(  { \frac{?}{2} }^{2 \sqrt{\pi} }  ) } }  \\  \\  =   \sqrt{ \frac{2}{\pi} }

✶⊶⊷⊶⊷❍ ❥ ❍⊶⊷⊶⊷✶

▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬

Similar questions