Math, asked by Abhijithajare, 19 hours ago

༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Solve the following simultaneous Equation
\  \textless \ br /\  \textgreater \  \\ \sf \: \frac{1}{3x + y} \: + \frac{1}{3x - y} = \frac{3}{4} \: \: \: ; \: \: \frac{1}{2(3x + y)} - \frac{1}{2(3x - y)} = \frac{1}{8}
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
And No spam.​

Answers

Answered by Anonymous
40

STEP-BY-STEP EXPLANATION :

.

\sf \frac{1}{3x + y} \: + \frac{1}{3x - y} = \frac{3}{4} \: \: \:  \:  \: \And \:  \:  \:  \: \: \frac{1}{2(3x + y)} - \frac{1}{2(3x - y)} = \frac{1}{8} \\

 \sf Let's,

  •  \sf  \frac{1}{3x + y}  = p \\
  •  \sf  \frac{1}{3x  -  y}  = q \\

\sf p + q = \frac{3}{4}  \:  \:  \: ...(1) \\

\implies \sf  \frac{p}{2} - \frac{q}{2} = \frac{1}{8}  \\

\implies \sf  \frac{p - q}{2} = \frac{1}{8}  \\

\implies \sf  {p - q} = \frac{1}{4} \:  \:  \: ...(2)  \\

 \sf Add \:  Both  \: Eq [1]  \: and  \: Eq [2],

\implies \sf p + q  + (p - q)= \frac{3}{4} +  \frac{1}{4}   \\

\implies \sf p  \cancel{ + q}  + p  \cancel{- q}= \frac{3 + 1}{4}   \\

\implies  \sf 2p = 1 \\

 \implies \sf p =  \frac{1}{2}  \\

 \sf Substitute \:  this  \: value  \: of \:  p  \: i n  \: Eq [1], \\

\implies \sf p + q = \frac{3}{4}  \:  \:  \: ...(1) \\

\implies \sf q = \frac{3}{4}  -  \frac{1}{2} \\

\implies \sf q =   \frac{1}{4}  \\

 \sf Here,

\implies  \sf  \frac{1}{3x + y}  = p \\

\implies  \sf  \frac{1}  {3x + y}  =  \frac{1}  {2}   \\

\implies  \sf  {3x + y}  =  {2}  \:  \:  \: ...(3)  \\

 \implies \sf  \frac{1}{3x  -  y}  = q \\

 \implies \sf  \frac{1}{3x  -  y}  =  \frac{1}{4}  \\

\implies  \sf  {3x  -  y}  =  {4} \:  \:  \: ...(4)  \\

 \sf We \:  have,

  •  \sf  {3x + y}  =  {2}  \:  \:  \: ...(3)  \\
  •  \sf  {3x  -  y}  =  {4} \:  \:  \: ...(4)  \\

 \sf Add  \: Both \:  Eq [3] \:  and  \: Eq [4],

\implies  \sf  {3x + y}   + (3x - y) =  {2} + 4   \\

\implies  \sf  {3x + y}   + 3x - y=  {2} + 4   \\

\implies  \sf  6x =  6  \\

 \sf Substitute \:  this \:  value \:  of \:  x \:  in  \: Eq [3], \\

\implies  \sf  {3x + y}  =  {2}  \:  \:  \: ...(3)  \\

\implies  \sf  {3 + y}  =  {2}    \\

 \implies \sf y =  - 1 \\

 \sf Therefore,

 \sf x = 1 \:  \And \:  y = -1 \\  \\

REQUIRED ANSWER,

.

  •  \sf x = 1 \:  \And \:  y = -1

Answered by MichWorldCutiestGirl
143

To FiNd,

  •  \color{red} \boxed{ \sf \: The \:  value \:  of \:  x  \: and \:  y \: }

SoLuTiOn,

\sf \frac{1}{3x + y} \: + \frac{1}{3x - y} = \frac{3}{4} \: \: \:  \:  \: \And \:  \:  \:  \: \: \frac{1}{2(3x + y)} - \frac{1}{2(3x - y)} = \frac{1}{8} \\

 \sf Let's,

 \sf  \frac{1}{3x + y}  = p \\

 \sf  \frac{1}{3x  -  y}  = q \\

\sf p + q = \frac{3}{4}  \:  \:  \: ...(1) \\

\implies \sf  \frac{p}{2} - \frac{q}{2} = \frac{1}{8}  \\

\implies \sf  \frac{p - q}{2} = \frac{1}{8}  \\

\implies \sf  {p - q} = \frac{1}{4} \:  \:  \: ...(2)  \\

 \sf Add \:  Both  \: Eq [1]  \: and  \: Eq [2],

\implies \sf p + q  + (p - q)= \frac{3}{4} +  \frac{1}{4}   \\

\implies \sf p  \cancel{ + q}  + p  \cancel{- q}= \frac{3 + 1}{4}   \\

\implies  \sf 2p = 1 \\

 \implies \sf p =  \frac{1}{2}  \\

 \sf Substitute \:  this  \: value  \: of \:  p  \: i n  \: Eq [1], \\

\implies \sf p + q = \frac{3}{4}  \:  \:  \: ...(1) \\

\implies \sf q = \frac{3}{4}  -  \frac{1}{2} \\

\implies \sf q =   \frac{1}{4}  \\

 \sf Here,

\implies  \sf  \frac{1}{3x + y}  = p \\

\implies  \sf  \frac{1}  {3x + y}  =  \frac{1}  {2}   \\

\implies  \sf  {3x + y}  =  {2}  \:  \:  \: ...(3)  \\

 \implies \sf  \frac{1}{3x  -  y}  = q \\

 \implies \sf  \frac{1}{3x  -  y}  =  \frac{1}{4}  \\

\implies  \sf  {3x  -  y}  =  {4} \:  \:  \: ...(4)  \\

 \sf We \:  have,

 \sf  {3x + y}  =  {2}  \:  \:  \: ...(3)  \\

 \sf  {3x  -  y}  =  {4} \:  \:  \: ...(4)  \\

 \sf Add  \: Both \:  Eq [3] \:  and  \: Eq [4],

\implies  \sf  {3x + y}   + (3x - y) =  {2} + 4   \\

\implies  \sf  {3x + y}   + 3x - y=  {2} + 4   \\

\implies  \sf  6x =  6  \\

 \sf Substitute \:  this \:  value \:  of \:  x \:  in  \: Eq [3], \\

\implies  \sf  {3x + y}  =  {2}  \:  \:  \: ...(3)  \\

\implies  \sf  {3 + y}  =  {2}    \\

 \implies \sf y =  - 1 \\

 \sf Therefore,

 \sf x = 1 \:  \And \:  y = -1 \\  \\

FiNaL AnSwEr,

 \color{red}\boxed{\sf x = 1 \:  \And \:  y = -1}

Hope you get your AnSwEr

Similar questions